
Bee-Up - Handbook v1.6

 1

Bee-Up
Handbook v1.6

Updated: 2022-02-16

Authors: Patrik Burzynski, Dimitris Karagiannis

General information
This Handbook is written for Bee-Up version 1.6 based on the ADOxx 1.51 platform. The Bee-Up tool
enables modelling according to several languages and techniques, among others:

• Business Process Model and Notation 2.0 (BPMN),

• Event-driven Process Chains (EPC) and extended EPCs (eEPC),

• Entity-Relationship (ER), and

• Unified Modeling Language 2.0 (UML)

• Petri Nets (PN).

If you should encounter problems, have questions or feature requests which are not covered yet, you can
contact the Bee-Up development team directly at bee-up@omilab.org .

Installation ... 3

Before the installation ... 3

During the installation ... 4

After the installation .. 5

Manual installation of SQL Server instance ... 6

Uninstallation .. 7

Modelling with the Bee-Up tool .. 8

Tool overview .. 8

Creating a new model .. 9

Cloning existing models ... 10

Editing the model .. 10

Adding edges to relations .. 11

Editing attributes ... 11

Checking models .. 12

Exporting models ... 13

Creating a graphic from a model ... 13

Exporting the exercise ... 13

Exporting and importing models ... 13

Exporting and importing Attribute Profiles ... 14

Exporting models as RDF ... 14

Additional hints and information .. 16

Specific information for BPMN modelling ... 16

1 http://www.adoxx.org/

mailto:bee-up@omilab.org
http://www.adoxx.org/

Bee-Up - Handbook v1.6

 2

Specific information for EPC modelling ... 18

Specific information for ER modelling ... 19

Specific information for UML modelling ... 21

Specific information for PN modelling .. 24

General information for modelling ... 26

Available functionality ... 27

Process simulation ... 27

Model execution .. 28

Code generation .. 29

Extending Bee-Up functionality ... 30

Extension through Flowcharts ... 30

Extension through Attribute Profiles ... 30

AutoStart Attribute Profiles ... 31

AdoScript Remote Execution ... 32

Handling large amounts of code ... 32

Editing configuration files .. 33

Checking global variables, functions and procedures ... 33

Available AdoScript functions .. 33

Components / Modules used in Bee-Up ... 47

Change history ... 48

Development team .. 52

Additional tools used ... 52

Bee-Up - Handbook v1.6

 3

Installation
The Bee-Up tool works primarily on a Windows operating system (XP, Vista, 7, 8, 8.1 or 10). It can however
also be used on systems that allow the execution of Windows applications, for example through Wine.
Therefore, different installers are provided for each operating system: Windows, Linux and macOS.

To install the Bee-Up tool follow these steps:
1. Download the ZIP-File containing the installation package for your OS from OMiLAB. Make sure to

download the correct version, e.g. macOS Catalina and newer don’t support 32-bit anymore!
2. Extract the contents to a folder.
3. Run setup.exe (Windows), install_linux.sh (Linux) or install_mac.sh (macOS) from the extracted

folder2.
4. Import the Attribute Profiles and groups (directories) from the file provided with the installation

("Standard Bee-Up attribute profiles.adl") to include all standard Bee-Up functionalities (see section
Exporting and importing Attribute Profiles for details).

Bee-Up uses the English language and expects the system to use it or a similar language as well. If your
system is using a different language, then check the next section for possible solutions.

The installation first checks the prerequisites and informs the user about any that have to be installed
(typically performed by the installer automatically). This includes required frameworks (like .NET on
Windows), applications (like Wine, Docker on non-Windows) and the creation of a SQL Server instance
(ADOXX15EN) where necessary. Once those tasks are finished a wizard (on Windows) or the installation
script (Linux, macOS) will guide you through the remainder of the installation. A new installation of Bee-Up
typically requires about 4.0GB on Windows, 4.5GB on Linux or 10.0GB on macOS, which can vary depending
on which prerequisites are already available (Docker, SQL Server instance, updates etc.). For more details
about the Linux and macOS versions please check the corresponding README.md files.

By default Bee-Up 1.6 will create and use the database with the name ‘beeup16’ (without the ‘ ’), unless a
different one has been specified during the installation (for example when ‘beeup16’ is already used by
something else).

Before the installation
1. Requirements for Linux / macOS: The installations for Linux and macOS systems work very similar

and share most of the requirements, which are: Homebrew (for macOS, necessary to install other
dependencies), Wine (version 3.21 or newer recommended, to run the main tool), Docker (to host
the container with the SQL Server instance) and Microsoft SQL Server 2017 Express (running in
Docker container). The provided installation script should take care of installing those
requirements. If needed details for their manual installation can be found in the README.md.

2. How to actually start the Linux / macOS installation: The installation on Linux and macOS works
through a bash script. The simplest way to execute it is through a Terminal by navigating to the
extracted folder and typing "./install_linux.sh" or "./install_mac.sh" respectively. Ensure that the
script has execution permissions (using "chmod +x ./install_mac.sh" in the terminal beforehand).

3. Language setting: Bee-Up uses the English language and can cause problems on Windows systems
that use a language with a vastly different alphabet (English and German work fine, languages like
Greek, Persian, Chinese etc. are known to cause problems). The Linux and macOS installers do not
face this problem, since they set the environment where the installer/tool is executed to English.
On Windows it is possible to use Bee-Up without having to change the system language by
changing the "Language for non-Unicode programs" of the operating system to "English" and
manually installing the SQL Server instance (details in sub-section "Manual installation of SQL
Server instance" further below). On Windows 7 this setting can be found in the "Control Panel"
under "Region and Language" in the "Administrative" tab. On Windows 10 the setting can be found
navigating to the "Settings" of Windows, going to "Time & Language" → "Language" →

2 Please note that the Linux/macOS installation scripts are provided to help you with the installation AS IS. While we
tried our best to make them as robust as possible, we can’t guarantee that they will work in every case. The scripts
have been tested with Ubuntu (18.04 LTS/18.10), Fedora (28/29) and macOS Mojave (10.14.3).

https://bee-up.omilab.org/

Bee-Up - Handbook v1.6

 4

"Administrative language settings" and then selecting the "Administrative" tab, as shown in the
picture below.
If an error saying "The selected database does not exist or has not been catalogued yet." is
encountered during the installation or an error like "Database … does not exist!" or "A character set
error has been detected…" pops up when starting the tool after the installation, then it’s most
likely due to the language setting. In this case please uninstall the tool and the SQL Server instance
"ADOXX15EN", change the setting and install Bee-Up again, preferably installing the SQL Server
instance manually.

4. Anti-Virus and Firewall Software: Some anti-virus or firewall software can lead to an error during
installation ("adbinst-18"), preventing the creation of the database and its population with the
necessary data. If you want to avoid this error or should you have already encountered it then retry
the installation with your anti-virus/firewall software disabled for its duration (uninstall Bee-Up
beforehand if it is installed). One known case where this error occurred was with the "Avast" anti-
virus/firewall.

During the installation
1. Installation of SQL Server instance fails on Windows: It is possible that the installation of the SQL

Server instance fails, typically with an error message like "Failed to install Microsoft SQL Server
(instance ADOXX15EN). Please check for errors and try again.", in which case the tool will not be
properly installed. One of the reasons is that the SQL Server installer performs a check and the
system doesn’t meet the necessary requirements. One of the requirements is that a system restart
is possible. Sometimes a different application can block the system restart, leading to the problem.
So one possible solution is to close all other applications, restart the computer and then perform
the installation. Another approach is to manually install the SQL Server instance beforehand (details
in sub-section "Manual installation of SQL Server instance" further below).

2. Errors occur during the Linux / macOS installation script: When running the script for the first time
errors shouldn’t occur during its execution. Unfortunately there can be many causes for errors: a
server is not available to download a necessary prerequisite, the script tries to reinstall an already
available prerequisite, a wrong version of the prerequisite is already installed, there is not enough
space available on the hard drive, an executed command went wrong etc. Please react accordingly.
Something that often helped us was to abort the script (CTRL+C, might be necessary to press a few
times) and try it again. One known case is during the configuration of the SQL Server database,

Bee-Up - Handbook v1.6

 5

which so far has always been solved by re-running the script. Also consider using the uninstallation
script if the error occurs multiple times and/or to manually install the prerequisites.

3. Installation asks for standard administrator "sa" password: Sometimes during the installation a

popup can ask for the database standard administrator password (see picture below). Some users
reported, that after aborting the installation and restarting the computer the popup no longer
appeared. Alternatively, if the SQL Server instance has been created automatically by the
installation, then it has set the initial ‘sa’ password to ‘12+*ADOxx*+34’ (without the ‘ ’). Help on
how to reset the ‘sa’ password can be found at the ADOxx.org community (in the FAQ: "SA
Password during ADOxx Installation").

After the installation
1. Can’t start Bee-Up using the shortcuts: Make sure that you have execution permissions for the

shortcuts (especially on Linux and macOS). On macOS a Bee-up shortcut is provided in the
Applications folder. However, macOS often doesn’t allow starting programs from unknown
developers and instead shows a warning. If this happens it is still possible to force macOS to open
the program through the "Open anyway" option under "System Preferences > Security & Privacy".

2. Database connection failed: Bee-Up uses a database to store all the information in the
background. Therefore during the installation an SQL Server instance is automatically created.
However, it can happen when starting the tool that an error is encountered with the message
"ADOxx could not connect to the database …! Please try again." This can happen when the
database service is not running. Please make sure that the proper SQL Server service is running
("SQL Server (ADOXX15EN)" in the services panel of Windows or the ADOXX15EN Docker container
on Linux / macOS) and try starting Bee-Up again.

3. The tool is stuck / a pop-up isn’t showing up: When running Bee-Up through Wine it sometimes
happens that a pop-up used by the functionality don’t show up properly, which blocks the entire
application until it is dismissed. In such a case it is recommended to press ESC to cancel the pop-up
and re-run the functionality.

4. Loosing connection to database while tool is running: On some Windows systems it can happen

that the connection from Bee-Up to the database is lost, usually with an error message like "Due to

http://www.adoxx.org/live/faq/-/message_boards/message/19635

Bee-Up - Handbook v1.6

 6

a database exception the connection has been closed …" This often happens due to a longer
inactivity which can lead to a connection time out. Unfortunately a consequence of this is a loss of
all the changes that have been made since the last save. It can however often be prevented from
happening by opening the "SQL Server Configuration Manager" tool (typically found under
"C:\Windows\SysWOW64\SQLServerManager11.msc"), selecting "Protocols for ADOXX15EN" and
disabling both "Named Pipes" and "TCP/IP" as shown in the picture below.

5. Some of the Bee-Up functionalities are missing: Starting with version 1.6 of Bee-Up some of the
functionalities have been externalised into "AutoStart" Attribute Profiles. If they are missing, then it
might be that they have not been properly imported or that the directory structure of the Attribute
Profiles differs from what is expected. The Bee-Up installation package comes with a file named
"Standard Bee-Up attribute profiles.adl", which contains the necessary Attribute Profiles and their
groups (directories). For details on how to import Attribute Profiles see section Exporting and
importing Attribute Profiles. The relevant directories to add the functionalities in Bee-Up are shown
in the picture below, accessible through "Edit → Attribute profiles…" in the "Modelling"
component. Note that both "AutoStart" and "AutoStart (deactivated)" must be on the same level
(siblings) as the default "Attribute profiles" directory and NOT inside another group. Should that
not be the case then you can move the directories using the "Move" option in the dialogue
available through the menu "Edit → Attribute profiles…" in the "Modelling" component.

Manual installation of SQL Server instance
One of the prerequisites for Bee-Up is an up and running SQL Server instance named ADOXX15EN with the
proper configuration. While the Windows installer creates the SQL Server instance automatically, it can still
encounter or cause problems later, e.g. due to Windows using a language setting other than one with a
similar character set to English. In such cases it is possible to install the SQL Server instance manually before
(re-)installing Bee-up. The Linux and macOS installers use a Docker image instead, which comes with the
proper configuration and causing fewer problems and will not be discussed here.

Bee-Up - Handbook v1.6

 7

An installer for SQL Server 2012 Express can be downloaded from the Microsoft Download Center3. There is
also an installer available for SQL Server 2008 in the folder "SQLExpress", however it should only be used on
older systems (Windows XP, Vista, 7) and the newer 2012 version should be preferred.

Detailed descriptions for the manual installation of the SQL Server instance on Windows can be found in
the "dbinfo" folder (the PDF-files with "install" like "BOC-Product_sqlserver_2008_express_install_en.pdf"
are relevant, not "createdb"). An alternative is available online on the ADOxx homepage (under
"Download" → "Windows Installation Guide" → "Installation of different collation database").

IMPORTANT: Independent of what these guides say, the "Instance ID" of the SQL Server instance MUST be
ADOXX15EN and the collation should be set to Latin1_General_CS_AS (CS: case-sensitive and AS: accent-
sensitive)!

A simplified installation procedure:

1. Run the SQL Server installer.
2. Create a new installation / instance, follow the instructions and ensuring the following:

a. During "Instance Configuration" a "Named instance" must be created and the "Instance ID"
MUST be set to "ADOXX15EN" and preferably the name too.

b. During "Server Configuration" specify the collation to be "Latin1_General" (Windows collation
designator) with "Case-sensitive" and "Accent-sensitive" both on or try
"SQL_Latin1_General_CP1_CS_AS" (SQL collation, not tested).

c. During "Database Engine Configuration" specify "Mixed Mode" as the authentication mode and
preferably use the password "12+*ADOxx*+34" (without the double quotes). It is also
recommended to add the current user under "Specify SQL Server administrators".

Uninstallation
Yes, it is also possible to uninstall Bee-Up if so wished or necessary. Please note that this will of course also
delete all the created models that are stored in the database. Therefore, it is advised to first back up
everything from Bee-Up that should be saved using the Export functionality (see section "Exporting and
importing models").

To completely uninstall Bee-Up on windows, two things should be performed:

1. Uninstall the Bee-Up tool – This can simply be achieved through running the uninstaller. This can be
done from the systems control panel / settings.

2. Uninstall the Microsoft SQL Server – Here the SQL Server instance used by Bee-Up ("ADOXX15EN")
should be uninstalled. Again this can be achieved from the systems control panel / settings.

For Linux and macOS please use the provided uninstallation script (uninstall_linux.sh / uninstall_mac.sh).
The script provides also the option to remove the Docker image that houses the SQL Server instance,
practically removing the SQL Server instance. Note that the scripts do not remove the prerequisite
applications (Homebrew, Wine, Docker). These have to be removed manually.

IMPORTANT: Removing the SQL Server instance will also remove all the data stored in all the databases of
the instance. If other ADOxx based tools have been installed and use the "ADOXX15EN" instance (which is
the default), or other relevant data has been put there, then it is not advised to uninstall the SQL Server
instance, since it could break the other applications!

3 https://www.microsoft.com/en-us/download/details.aspx?id=50003 Microsoft® SQL Server® 2012 (SP3) Express. Use
"ENU\x86\SQLEXPR_x86_ENU.exe" or "ENU\x86\SQLEXPRWT_x86_ENU.exe" with tools for management.

https://www.microsoft.com/en-us/download/details.aspx?id=50003
https://www.adoxx.org/live/installation-guide-15-other-collation
https://www.microsoft.com/en-us/download/details.aspx?id=50003

Bee-Up - Handbook v1.6

 8

Modelling with the Bee-Up tool

Tool overview
When first starting the Bee-Up tool you see a screen similar to the following one (without the numbers):

At the top is the menu bar with different menu items for direct access to some of the platforms
functionality. The numbered elements of the above picture are:

1. The Toolbar with icons as shortcuts for different functions. On the left side of the toolbar is the
component selection:

This changes which menus, menu items and toolbar icons are available. The two important
components are "Modelling" (left most icon) and "Import/Export" (right most icon). The current
section of this document focuses on the "Modelling" component, while the next will describe some
functionalities of the "Import/Export" component.

2. The Start Page is visible, showing recently opened models. The Start Page can be accessed through

the house icon in the Toolbar. Once a model is opened it will be shown instead of the Start
Page. This area is then referred to as the Modelling area.

3. The Modelling window shows the modelling objects and relations available for the currently
opened model (in the figure above none, because no model is open).

4. The Explorer window shows all folders (called model groups) and the models stored in a model
group. Initially, model groups for all exercise sheets are preconfigured, accompanied by a testing
model group.

5. The Navigator window shows an overview of the currently opened model.

1.

5.

2.

4.

3.

Bee-Up - Handbook v1.6

 9

Creating a new model
In order to create a new model select the menu item "Model → New…" while in the "Modelling"

component (left most icon in the Toolbar).

This will open the dialog shown below (without the numbers):

In this dialog first select the appropriate filter for the model types (e.g. Entity-Relationship for ER-models),
either by using the graphic on the left side (1.) or the dropdown-list in the middle (2.). Afterwards, select
the desired model type from the list in the middle (3.). Then enter a name (mandatory) and a version
(optional) on the right side (4.). Finally, select to which model group the model should be assigned (5.). Use
the model groups to organize your models in a clean manner.

Selecting "Create" will create an empty model of the selected model type, store it in the selected model
group and open it, ready to be edited. Model groups can be managed (created, moved, deleted) through
the context menu at (5.), the context menu in the Explorer window or through the "Model → Model

groups…" of the "Modelling" component ().

1.
2.

3.

4.

5.

Bee-Up - Handbook v1.6

 10

The picture above shows an example for a newly created and opened Entity-Relationship model. The
Modelling area (2.) now shows the empty Drawing area (a white canvas) instead of the Start Page. The
Modelling window (3.) shows the available types of objects and relations that can be used for ER
modelling, e.g., Entity, Relationship etc. The created model can also be seen in the Explorer window (4.)
under the selected model group. The Navigator window (4.) shows the complete model, enabling direct
navigation and zooming, as well as the portion that is currently shown in the Modelling area.

Cloning existing models
Bee-up 1.5 added a functionality to clone existing models, which can be helpful to create an intermediate
save point. It is available through the "Model → Clone active model" or "Model → Clone set of models"

menu while in the "Modelling" component (). The benefit of cloning is that it allows to clone a set of
models at once while keeping them consistent, e.g. any Inter-Model references (pointers towards other
objects / models) used in the clones will be adapted to point towards clone models of the same set.

Editing the model
To edit a model it hast to be opened in the Bee-Up tool. The easiest way to open a model is to double click
on its name in the Explorer window. New objects can be added to the model by selecting the type of object
that should be added in the Modelling window and then clicking in the Modelling area where the object
should be placed. If necessary the Drawing area will be extended automatically. After adding a few objects,
the Modelling area could look like this:

2.

4.

3.

5.

Bee-Up - Handbook v1.6

 11

In order to connect objects with relations, first select the relation type from the Modelling window. Then
click in the Modelling area on the object that is the source ("starting point") of the relation and then on the
object that is the target ("ending point") of the relation. Certain types of relations can only be used
between specific types of objects (e.g. "has Attribute" always has to target an "Attribute"). The previous
example with some relations could look like this:

All objects can be moved in the Modelling area by selecting them and moving them accordingly. Some
objects can also be resized, which works similar to resizing windows in the operating system (drag the
side/corner when it is selected). For both the "Edit" function has to be selected in the Modelling window
(looks like the default mouse cursor). After creating objects and relations you can quickly switch back to
"Edit" by pressing the right mouse button. It is also possible to move/resize several objects at once by
selecting them first (draw selection box around them, SHIFT+Click, CTRL+Click) and then performing the
move or resizing. The difference between SHIFT+Click and CTRL+Click is that using SHIFT will select the
object and all of the objects it contains if it is a container (like a "Package", "State", "Combined Fragment",
"Lifeline" etc.) while using CTRL only select the object itself. SHIFT-Click is useful when a container should
be moved with all of its contents at once.

Adding edges to relations
It is also possible to add edges to relations through so called bend points. Those force the relation to be
drawn through that point and can increase readability of the created models. The following picture shows a
relation with six bend points (small white rectangles):

Bend points can be added either during the creation of the relation, or afterwards. To add bend points
during the creation first click on the source, then click on the desired points in the Modelling area where a
bend point (i.e. an edge) should be drawn, and finally click on the target object. To add them after the
relation has been created, select the relation first and then click and drag a point of the relation (that isn’t
already a bend point) to the desired place on the Modelling area.

The source or the target of a relation can also be changed by selecting the relation and then clicking the
yellow circle at the beginning or the end and dragging it to the new object that should be the source or
target. The green diamond that is visible when a relation is selected can be used in many cases to move the
text that is visualized next to it (e.g. the cardinality of the "Links" relation; ‘m’ in the figure above).

Editing attributes
All objects, models and relations can have editable attributes, which can also influence their visualization in
the Modelling area (e.g. weak entities have a double outline instead of a single one). Those attributes can
be accessed by double-clicking on the object or relation (or selecting it and then pressing Enter). This opens
up the ADOxx Notebook, which contains the attributes that can be edited. To access the attributes of a
model it has to be opened first and then select the menu item "Model → Model attributes" or press
ALT+Enter. The following picture shows an example of a Notebook:

Bee-Up - Handbook v1.6

 12

The attributes take up the largest portion of the Notebook and are categorized in different tabs, available
on the right side of the Notebook. Depending on the attribute type different editors for the attribute value
are available (e.g. single-line text field for the Name, multi-line text area for the Description, checkbox for
the Weak entity etc.). For some attributes an alternative editor can be accessed through the button. Also

additional information is available for most of the attributes and can be accessed by clicking on the icon.
A similar icon can be found at the top right (underneath the X for closing the window), which provides

information about the type of the object. The two buttons at the lower right are an alternative to
switching between the different tabs. They are also used to switch between pages of one tab, in the case
that more attributes are available than can be shown in the Notebook window.

There are two special types of attributes that have to be described in more detail:
1. Inter-model references – they allow to link (reference) to one or several other objects or models

and have three special icons: . The first one (+) allows to add new references, while the
second one (X) removes the selected references. The third one (→) is like a hyperlink that jumps to
the referenced object. Often when the attribute value is visualized it also works as a hyperlink in
the Modelling area.

2. Tables – they allow to store more complex attribute values in a structured way. They also have two

special icons: . The first one (+) is used to add a new row at the end and the second one (X)
removes the selected rows. Note that in order to select rows the number on the left side has to be
clicked. The context menu also provides several options to handle rows in a table (e.g. insert row,
move row, etc.)

It is also possible to edit some of the attribute values that are visualized in the Modelling area without
using the Notebook. For this simply select the object and then click on the visualized attribute value (e.g.
the name: "Entity (ER)-317265"). Note that this takes precedence over opening the Notebook through
double clicking, thus preventing it.

Checking models
The Bee-Up tool also provides some simple checks in some types of models (ER and EPC among others).
While previously these have been performed automatically during modelling, it is now necessary to
manually request some of them. To check if the elements and relations are used properly the menu item

"Model → Check cardinalities" while in the "Modelling" component () can be used. Note that the
cardinality check is meant as a help and not a replacement for human knowledge. Therefore it can miss
some errors in the model (like an "Event" following an "Event" when an operator is between them).

Bee-Up - Handbook v1.6

 13

Exporting models
The tool also provides functionality to export the created models in different formats. Some of those will be

described here. Most of them are available in the "Import/Export" component ()

Creating a graphic from a model
It is possible to create a graphic of the currently opened model and store it in a file using the provided

"Generate graphics" functionality (icon in the Toolbar or through the menu "Edit → Generate graphics

→ Region…", both available when using the "Modelling" component). This opens a dialog showing the
region of the model for which the graphic will be created as well as options to scale the created picture and
to either save it in a file (with different formats available) or copy it to the clipboard. Clicking on the
"Generate" button will finish the process.

The region can be set beforehand by holding down the ALT key and click-and-dragging a box in the
Modelling area with the mouse. This will create a teal rectangle showing what region will be used for
generating the graphic and which can also be resized. The following picture shows the dialog for the
previous example model, where a fitting region has been set:

Exporting the exercise
It is also possible to export an entire exercise at once. This can be achieved by using the menu item "Export

→ Export Exercises" (or using the icon in the Toolbar). This will show a dialog where the model group
containing all of the solutions for the exercise can be selected. Afterwards a new dialog asks for a folder
where the results should be stored. Once it is finished a message will inform you about it.

This functionality exports all of the models contained in the selected model group or one of its descendent
sub-groups in ADL format and also creates individual graphic files for all of the models. The creation of the
graphic can sometimes fail when the name and/or version contain a character that is not supported by the
operating system as a filename4. IMPORTANT: It also removes empty space from the right and the bottom
of the drawing area (in the Modelling area) AND saves the model before generating the graphic.

Exporting and importing models
One or several models as well as model groups can be exported to/imported from either the ADL format
(proprietary) or XML format by using the according menu items in the "Model" menu (e.g. "Model → ADL
export → Models/Attribute profiles…").

For the export a simple dialog is shown where the models and/or model groups are selected at the top. The
middle of the dialog contains some checkboxes to control what should be exported (e.g. "Including
models", "Including model groups" etc.) and at the bottom the file is specified where the models/model

4 Common ones like „:", „/", „*" etc. are replaced by a „-" for the file name.

Bee-Up - Handbook v1.6

 14

groups should be exported to. The export is started by clicking on the "Export" button and at the end a
success or error message is shown.

For the import there are several tabs available. In the "File selection" tab the file containing the
models/model groups is selected and whether to import from other libraries, like a different version of the
tool. The "Model options" tab provides some choices on how to deal with collisions, e.g. what to do when
two models have the same name. The last tab "Log file" allows logging the process in a file. After everything
is selected click on the "OK" button. This will prepare the data from the previously selected file and open
another dialog. Here the left side shows which models and/or model groups have been found in the file and
you can select which of those should be imported. On the right side select into which model group the
contents should be imported and click on the "Import" button. At the end a success or error message is
shown.

Exporting and importing Attribute Profiles
Attribute Profiles can be imported and exported similar to models both in ADL or XML format using the
same menu items (e.g. "Model → ADL export → Models/Attribute profiles…" from the Import/Export
component). In this section only the relevant differences are being presented.

When exporting Attribute Profiles it is important to select the proper tab at the top of the dialogue as
shown in the picture below.

When Attribute Profiles are being imported it is not necessary to select a "Target attribute profile group". In
some cases none should be selected, for example when importing the "Standard Bee-Up attribute
profiles.adl", which have a specific structure of groups (directories). Also make sure that the Attribute
Profiles on the left side and the "Including attribute profile groups" option in the bottom left are selected.

Exporting models as RDF
A new function in version 1.1 adds the possibility to export one or several models in RDF Format. This can
be simply accessed through the menu item "Model → RDF Export". The first dialog asks which models

Bee-Up - Handbook v1.6

 15

should be exported. Here either directly the models or entire model groups can be selected. Afterwards a
file selection dialog will ask where the RDF data should be stored and allows a choice of different formats
(.trig is recommended). A third dialog will ask for a base URI to be used in the identifiers as a prefix. Here it
is recommended to use a valid URL without the fragment (for example http://www.omilab.org/example#
or http://www.example.net/#). It is not necessary for the URL to be actually used (i.e. the URL can return
an error code like 404), just that the URL is valid. Once it is finished a message will inform you about it.

With Version 1.2 additional attributes have been added to (almost) all elements and models to enhance the
RDF Export. These are found in the "RDF properties" tab of the Notebook. The "URI" attribute allows
specifying a specific URI to be used for the element/model instead of automatically generating a URI. The
"Additional Triples" table allows specifying additional triples (Subject, Predicate and Object) that will be
added to the graph, where one row represents one triple. If a cell is left empty in the "Additional Triples"
table, then it will be substituted with the URI of the element/model it is located in. Note that the values
provided in those attributes will be treated as is as a complete URI (ignoring prefixes etc.). Therefore, it is
necessary to enter the entire URI. Also with Version 1.2 the names of elements and models are exported
explicitly as rdfs:label statements.

http://www.omilab.org/example
http://www.example.net/

Bee-Up - Handbook v1.6

 16

Additional hints and information

Specific information for BPMN modelling
The BPMN implementation provides concepts to describe processes, as well as for describing input, output
and execution of "Tasks". Different modes are available, which limit the available concepts. By default the
"BPMN 2.0" mode is selected, which contains the typical BPMN concepts. However, the mode can be
changed (through the menu "View → Mode") to "Simulation". This mode further adds concepts which are
necessary to perform simulation of processes in the tool (e.g. converging gateways as their own types). The
following picture shows the two modes and which types of elements they use:

The majority of the BPMN implementation should be straight forward. Some constraints are enforced by
the tool (e.g. "Pool" cannot be the source or target of "Subsequent" relations). However, due to certain
platform restrictions the Gateways (Exclusive, Inclusive, Parallel etc.) are handled a bit differently5. In the
normal BPMN mode the Exclusive Gateway is available as its own type ("Exclusive Gateway"), however the
Inclusive and Parallel Gateway are modelled through the "Non-exclusive Gateway". The type (Inclusive,
Parallel or Complex) is then set through the attribute "Gateway type" (in the Notebook)6. To use simulation
the "Non-exclusive Gateway" has to also be distinguished between the two different types of " Non-
exclusive Gateway" and "Non-exclusive Gateway (converging)".

Previously the Intermediate event was split into two different types: "Intermediate Event (boundary)" and
"Intermediate Event (sequence)". Since Version 1.1 the two have been merged into one and are
distinguished through setting the "Attached to" Attribute. If the attribute has a value it will be considered
on the Boundary of the set "Task". A new Mode has been added called "Deprecated", which allows the use
of the two old Intermediate events in order to not destroy previously created models. Those events can
easily be transformed into the new "Intermediate Event" by right clicking on them and selecting "Convert
→ Intermediate Event (BPMN)".

Certain types of objects can be converted into other types (e.g. "Exclusive Gateway" to "Non-exclusive
Gateway") by selecting them and then using "Conversion" in the context menu. An object will become
greyed out and cannot be selected, if it is converted to a type that is not available in the current mode. To
transform it back (or delete it or change it etc.), simply change the mode to one that makes use of the type
(e.g. "All modelling objects"). The picture below shows the available options for converting the "Exclusive
Gateway":

5 This is due to the way simulation is handled by the platform.
6 "Simulation" mode additionally has a "Non-exclusive Gateway (converging)", which is necessary for the simulation.

Bee-Up - Handbook v1.6

 17

The availability of some attributes (in the Notebook) is dependent on the values of others. This is to prevent
setting wrong values or changing irrelevant attributes. For example the available "Triggers" of a "Start
Event" depend on its "Type" to prevent wrong selections. Another example is the "Loop condition
(standard)" attribute of a "Task", which is only available when the "Loop type" is set to "Standard"
(otherwise it is irrelevant).

The relation "Subsequent" has an attribute "Visualized values", which controls which attribute values are
shown. Should the desired value not be shown on the drawing area (e.g. "Transition condition") then it
might be because of the "Visualized values" attribute. "Subsequent" is also used in several different model
types (e.g. EPC, UML Activity Diagram). Therefore it also contains attributes used in those model types.
They are however grouped in their own categories (e.g. "UML properties").

For many different types of objects (e.g. "Start Event", "Exclusive Gateway" etc.) the visualization of the
name can be controlled through the attribute "Show name". In some cases this is a simple choice if the
name should be displayed (e.g. "Start Event"). In other cases more options are available (e.g. for "Exclusive
Gateway" to show below, above or not at all).

Version 1.2 also added the option to further describe Service Tasks through Petri Nets or Flowcharts using
the "Automated service details" attribute. The attribute should reference the starting point in the Petri Net
or Flowchart.

The following picture provides some detailed information about the implementation of BPMN in Bee-Up.
More specifically it shows an excerpt of how the BPMN meta-model is implemented. Certain parts are
provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for process
simulation. The "…" abstract class is used to represent complex generalization structures in the meta-model
in a simplified manner.

Bee-Up - Handbook v1.6

 18

Specific information for EPC modelling
The EPC implementation provides the core concepts from Event-driven Process Chains to describe
processes ("Event", "Function", logical operators), as well as some additional ones for describing input,
output and execution of "Functions". Different modes can be selected, which limit the available concepts.
By default the "EPC" mode is selected, which contains "Events", "Functions" and the basic logical operators
from EPC with some additional "general" concepts. However, the mode can be changed (through the menu
"View → Mode") to "eEPC" or "Simulation". "eEPC" (extended EPC) additionally contains "Organizational
units", "Information objects" and relations for those new object types. The relations for denoting inputs
and outputs for "Functions" are implemented as separate types. "Simulation" mode further adds concepts
which are necessary to perform simulation of processes in the tool (e.g. "Start Event" which explicitly
denotes the start of the process). The following picture shows the three modes and which types of
elements they use:

The majority of EPC should be straight forward. However, due to certain platform restrictions the typical
logical operators (XOR, OR, AND) are handled a bit differently7. In the basic "EPC" and "eEPC" the XOR
operator is available as its own type ("XOR operator"), however the AND and OR operators are modelled
through the "Parallel fork". The type (AND or OR) is then set through the attribute "Type" (in the
Notebook)8. In "EPC" and "eEPC" mode the "Parallel fork" can be used both for splitting and merging paths.
For simulation it is however necessary to use the "Parallel fork" to split and the "Parallel merge" to join
paths again.

The relation "Subsequent" has an attribute "Visualized values", which controls which attribute values are
shown. Should the desired value not be shown on the drawing area (e.g. "Transition condition") then it
might be because of the "Visualized values" attribute. "Subsequent" is also used in several different model
types (e.g. BPMN, UML Activity Diagram). Therefore it also contains attributes used in those model types.
They are however grouped in their own categories (e.g. "UML properties").

Certain types of objects can be converted into other types (e.g. "Event" to "Start Event" or "End Event",
"XOR operator" to "Parallel fork" etc.) by selecting them and then using "Conversion" in the context menu.
An object will become greyed out and cannot be selected, if it is converted to a type that is not available in
the current mode. To transform it back (or delete it or change it etc.), simply change the mode to one that
makes use of the type (e.g. "All modelling objects"). The picture below shows the available options for
converting the "XOR operator":

7 This is due to the way simulation is handled by the platform.
8 "Simulation" mode additionally has a "Parallel merge". This distinction between fork and merge is necessary for the
simulation algorithm.

Bee-Up - Handbook v1.6

 19

Version 1.2 also added the option to further describe Functions through Petri Nets or Flowcharts using the
"Automation details" attribute. The attribute should reference the starting point in the Petri Net or
Flowchart.

The following picture provides some detailed information about the implementation of EPC in Bee-Up.
More specifically it shows an excerpt of how the EPC meta-model is implemented. Certain parts are
provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for process
simulation. The "…" abstract class is used to represent complex generalization structures in the meta-model
in a simplified manner.

Specific information for ER modelling
The ER Model implementation provides the general concepts used ("Entity", "Relation" and "Attribute") as
well as the necessary connectors9 ("Links" and "has Attribute") among other common elements ("Note",
"has Note" etc.). A "Links" connector should start from either a "Relation" or a "Relation Node" and target
an "Entity", a "Relation" or a "Relation Node". So it is necessary to click first on a "Relation" or a "Relation
Node" when creating a "Links" connector. Cardinalities for the relation are also set on the "Links"
connector. Note that for Chen-Notation the "m" is used for anything else than 1, meaning it should be used
to represent Cardinalities like "m", "n", "o" etc. Think of "m" not as a specific number, but as "many". What
notation is visualized in the model can be set through the model attribute "Used Notation (ER)" found in
the "ER properties" tab.

The finer details are controlled through the attributes found in the notebook, which in some cases also
influence the visualization (notation) of the objects. For example to show a "Weak Entity" use a normal
"Entity" and check its "Weak entity" attribute in the Notebook. Also to specify the "Relation" that indicates
on which stronger entity it relies use a "Relation" and set its "Relation type" attribute to "Weak entity
dependency".

Should a "Relation" be between the same "Entity" (e.g. Person knows Person) then use the "Relation Node"
on one of the connections. For a binary relation (e.g. Person knows Person): First connect the "Relation" to
the "Entity" directly, then connect the "Relation" to a "Relation Node" and then connect the "Relation

9 In this one section we refer to the lines as "connectors" instead of "relations" to not confuse them with the objects
of type "Relation"

Bee-Up - Handbook v1.6

 20

Node" to the "Entity". This is necessary because of how identifiers of connectors work (identified by their
type, their source object and their target object). An example can be seen below:

To help manage the names for objects an "Update names" option has been added in Bee-Up 1.6 to the
context menu. It updates the names of all selected elements (e.g. "Attributes") based on the value specified
in their "Label" / "Denomination".

Functionality for creating SQL statements from an ER Model is also provided. In version 1.6 it has been
moved to a button, which is accessible in the model attributes of an ER model with a description of the
quirks and details found below the button. The functionality uses the currently active model and will ask for
a file to store the created SQL code in. If the selection of a file is cancelled it will instead show the SQL code
in a pop-up window from where it can be copied to the clipboard. Version 1.2 added two SQL properties to
"Attribute": 1) one for directly entering the data type of the attribute and 2) to specify auto-increment
(only works for MySQL). Version 1.3 changed how to handle inheritance through "IS-A" relations. Two
options are available as Model attribute "IS-A Behaviour": 1) the "old" style where the table is copied and
2) [now default] which handles inheritance similar to Weak Entities.

The following picture provides some detailed information about the implementation of ER in Bee-Up. More
specifically it shows an excerpt of how the ER meta-model is implemented. Certain parts are provided by
the platform to allow specific functionality, like __D_container__ used to automatically derive "Is Inside"
relations.

Bee-Up - Handbook v1.6

 21

Specific information for UML modelling
UML and its implementation in the tool are big. Addressing all of the peculiarities would be difficult and
also a lot of text to read. Therefore, they are addressed in general and some examples are provided.

Notations10 are generally influenced by the attribute values that are specified for them (in the notebook):

• Most of the attributes that deal only with the visualization are located in a category called
"Presentation". Examples for such attributes are "Color" (of the object background), "Representation"
(of text) and "Presentation" (of class details).

• The "Subsequent" relation and the "Activity edge" use the attribute "Visualized values" to control
which attribute values should be shown (e.g. Denomination, Transition condition, Weighting etc.).

• Relations often have an option on where the text should be shown, handled through a
"Representation" attribute. In general "above/below" value should be used for parts of relations going
horizontally and "left/right" value for parts of relations going vertically. As an example the
"Association" used in "Class / Object Diagrams" can have text at three parts: at the start, at the middle
and at the end. For the start and the end a different "Representation" value can be set. If for example
the association class starts going from the object towards the right (horizontal) and then turns towards
the bottom (vertical) then the "Representation start" should use "above/below", the "Representation
end" should use "left/right".

• UML Specific attributes (e.g. "IsAbstract", "Visibility" etc.) are usually located in a category called "UML
properties". In some cases they are located in the "Description" category as well (e.g. the "Type" of a
"Final Node") for quicker access or have their own category (e.g. "Properties/Operations" of a "Class").
Some of them also influence the notation, like the "Final type" attribute of a "Final Node" in an
"Activity Diagram" or the "Properties" entered in a "Class".

• Certain relations, like the "Message" from a "Sequence Diagram", have their sub-types controlled
mostly through the attributes. So the typical types like "synchronous call", "asynchronous call" and
"reply" are handled through the "Message sort" attribute of the "Message" relation.

In order to draw several relations between the same two objects in the same direction (e.g. several
"Associations" between the same two "Classes") the "Relation Node" has to be used. For every additional
relation beyond the first one it is necessary to create two relations: one has to go from the source object to
a "Relation Node" and the other from that "Relation Node" to the target object. This is necessary because
of how identifiers of relations work11. For example when there are the classes "Employee" and
"Department" and two associations "works for" and "manager of" between the two classes. The "manager
of" association can go directly from "Employee" to "Department". However, the "works for" association has
to be split in two: one association going from "Employee" to a "Relation Node" and another from the same
"Relation Node" to the "Department". The attributes should also be split among those two relations
accordingly (i.e. the multiplicity for the "Employee" side of "works for" has to go to the first relation, the
multiplicity for the "Department" side of "works for" has to be in the second relation and the name can be
in one of those). The example can be seen below:

10 The look of an object on screen or on paper.
11 A relation is identified by its type, its source object and its target object. Duplicate identifiers are not allowed.

Bee-Up - Handbook v1.6

 22

There are also cases where the source and the target of a relation should be the same object (e.g. an
"Association" from a "Class" to the same "Class" or a "Transition" from a "State" to the same "State"). This
also requires a "Relation Node", since the same object cannot be the source and the target of one relation.
For this case simply make a relation from the object to the "Relation Node" and then from the "Relation
Node" to the same object. For example when a relation "knows" should be from and to the class
"Employee" first create the "Relation Node", then make an "Association" from "Employee" to the "Relation
Node" and then from the "Relation Node" back to the "Employee". The example can be seen below:

In UML it is also sometimes necessary to have a relation which originates or targets another relation. Again
this is solved by using the "Relation Node". Simply put the "Relation Node" on the relation that should be
the source or the target (this will split the relation in two) and use the "Relation Node" as the source or
target of the other relation. For example when the association "works for", between "Employee" and
"Department" should be linked to a class "works for" to indicate it is an association-class (so it can contain
attributes like "working hours"): first put the "Relation Node" on the "works for" association and then make
the "is Associationclass" relation from that "Relation Node" to the desired "works for" class. The example
can be seen below:

The boundary of "Lifelines" should not overlap, due to the automatic assignment of "Execution
Specifications" based on being inside of a "Lifeline". The exact boundary of an object is visible when the
element is selected and is represented by the thick-chequered line as seen in the picture below:

To create a "Composite State" (i.e. a "State" that contains other states) use the "State" type and set the
attribute "Number of regions" to a value larger than 0, depending on how many regions are available. A
simple example of a "Composite State" with only one region can be seen below:

Bee-Up - Handbook v1.6

 23

In a UML Use Case Diagram it is possible to add constraints to "Extend" relations using two approaches:

1. Use the "Condition" and "Points of extension" attributes of the "Extend" relation.
2. Create a "Constraint" object, place a "Relation Node" in the middle of the "Extend" relation and

then connect the "Constraint" to the "Relation Node" through the "has Constraint" relation.

In "Sequence Diagrams" it is sometimes necessary to show a time delay by drawing "Message" relations
diagonally. This is generally achieved by adding bend points to a relation. However, adding bend points can
be difficult since the tool tries to draw horizontal (and vertical) relations whenever possible. Therefore the
"Message" relation contains an attribute called "Time delay". Putting a check mark in this attribute will
automatically add two bend points to the relation. Those can then be moved and other bend points can
also be added more easily. Removing the check mark will also remove the bend points again. The two
pictures below show a "Message" relation with the two possible states of the "Time delay" attribute:

It is possible to leave notes and comments in the models by using the "Note" class and also assigning those
notes to any object using the "has Note" relation. The text displayed is specified through the "Description"
attribute of the "Note". An example can be seen below:

Bee-Up 1.6 added the "UML Class Diagram 2 Skeleton" functionality, which allows deriving source code out
of a UML class diagram for Java, C++ and Python. The code should then be further extended with the
desired functionality. It is available through the "Model" menu of the "Import/Export" component.
Selecting "Cancel" when prompted for a folder to store the results will instead provide the code directly
through a text-box. It does however have some limitations, e.g. doesn't work with "Relation Node".

The following picture provides some detailed information about the implementation of UML in Bee-Up.
More specifically it shows an excerpt of how the UML meta-model is implemented. Certain parts are
provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for process
simulation (e.g. of Activity Diagrams). The "…" abstract class is used to represent complex generalization
structures in the meta-model in a simplified manner.

Bee-Up - Handbook v1.6

 24

Specific information for PN modelling
The Petri Net implementation provides the base concepts ("Place", "Transition" and a connector called
"Arc") as well as some additional ones for simulation and state storage. Tokens are modelled through the
"Tokens" attribute of "Place" and are also visualized in them through small black circles and a number if
there isn’t enough room to draw all tokens. "Transitions" are also categorized into "Hot" (drawn in red
color) and "Cold" (drawn in blue color with a black "epsilon" looking character) transitions which is handled
through the "Type" attribute. "Arcs" contain an attribute "Weight" which is used to denote how many
tokens should be consumed/created by the attached "Transition". The picture below shows the different
notations of a Transition:

When the conditions to fire a transition are met (i.e. enough tokens in all preceding places and enough
capacity in all succeeding places) then a "Fire" button will appear on the transition (see picture above).
Clicking on this button will fire the transition, meaning that the necessary tokens will be consumed in
preceding "Places" and new ones will be added to the succeeding "Places". In Version 1.1 the "Arcs" have
been extended with additional "Ready behaviour" for their following transitions, which allows firing a
transition only when certain conditions are met without consuming any tokens. For more information
check the "Ready behaviour" attribute information of an "Arc".

Bee-Up - Handbook v1.6

 25

To simulate the net a special concept called "Simulation Configurator" is used (see picture above). It
contains the configuration for a simulation run and is also used to start the simulation. The configuration is
handled through the attributes of the notebook. See the additional information available for each attribute
to find out more. The simulation can be started either by using the buttons on the drawing area or the
buttons in the notebook. Through them either one iteration, multiple iterations or a slow simulation with
delays between each iteration can be run. One iteration tries to fire all ready "Transitions". Should there
not be enough tokens to fire all ready "Transitions" (e.g. several transitions requiring a token from a "Place"
that only has one) then the selected "Transition conflict strategy" will be employed. With Version 1.3 an
additional style of Petri Net simulation has been added through the "Automated Transition Firing" where
each iteration selects only one "Transition" to fire (check its help text for more information).

It is also possible to store the current state of a Petri Net and later restore it using "State Storage" (see
picture below). In this context the state of the whole net is considered to be the amount of tokens in all the
known places. When a "State Storage" is first added to the model it will store the state at that time in its
attribute "Storage". This stored state can also be manipulated manually through that attribute. The
notebook also provides two buttons: one to store the current state of the model (i.e. update the "State
Storage" object with new values) and one to restore the state based on the "State Storage".

Version 1.1 also added two Model attributes: "Visualize priorities" and "Visualize probabilities". Selecting
those changes the notations of transitions. "Visualize priorities" shows their relative priority in the model
with a green bar on the left. "Visualize probabilities" shows a yellow bar on the right of cold "Transitions".
Version 1.3 added more Model attributes: "Visualize fire button" which, when selected, will hide the "Fire"
buttons in the Petri Net and "Visualize relative frequencies" which will show the relative frequencies
specified for the "Transitions" through a purple/violet bar at their left. It also added a "Capacity" attribute
to the "Places" that is considered when checking if a "Transitions" is ready.

The picture below provides some detailed information about the implementation of PN in Bee-Up. More
specifically it shows an excerpt of how the PN meta-model is implemented. Certain parts are provided by
the platform to allow specific functionality, like __D_container__ used to automatically derive "Is Inside"
relations.

Bee-Up - Handbook v1.6

 26

General information for modelling
• Don’t forget to save (so you are safe from data loss).

• Context menus are available for many things (e.g. objects in the Modelling area, entries of the
Explorer window etc.). Making use of them can make work easier.

• Should a window be gone/missing (e.g. Explorer window, Modelling window etc.) → They can be
toggled on and off through the menu "Window → Tools"

• Most icons have a tool tip, which provide a hint on what an icon is about. In case of the icons of the
Modelling window the tool tip show the name of the type (e.g. Entity, Relation, has Attribute etc.).

• The tool also provides some functions for convenience. They can be accessed through the Toolbar

using the icons. From left to right they toggle the functionalities:
o Align objects on the grid. The grid can be configured through the menu "View → Grid → Settings…"
o Show the grid.
o Use the modelling assistant. It supports the creation of new objects and relations from an existing

object.
o Automatically add bend points to relations when creating them to use right angles.

• Notations can contain hyperlinks to other models/objects if the proper attributes are set. For example
if a "Class" has the "Referenced class" attribute set, then the visualized name will be based on the
referenced class and also a hyperlink to that class.

• The size of the Drawing area is represented by the white rectangle with the grey border in the
Modelling area and can be resized similar to a window. Note that it is automatically extended as
needed to fit any new objects that are created or old elements when their position is changed.

• Some model types (e.g. EPC, BPMN) have different modes. Those control which types of objects are
available and visualized in the Modelling area. They can be changed through the menu "View →
Mode"

• Unintentional object access locks are reversible through the menu "View → Object access locks…"

• The tool has certain restrictions due to the things it uses as identifiers and also some limitations:
o Models are identified through their type and a combination of their name and version ("[name]

[version]"). Therefore two ER models, one with the name "Exercise" and version "3" and the other
with the name "Exercise 3" are not allowed.

o Objects in a model are identified through their type and their name. Therefore no two objects of
the same type in the same model can have the same name. Because of that the "Attribute" in ER
models uses "Denomination".

o Relations in a model are identified by their type, their source object and their target object.
Therefore two relations of the same type linking the same objects in the same direction in the
same model cannot exist.

o The source and the target of a relation cannot be the same object.
o Relations cannot be the source or the target of other relations.

• To work around the limitations of relations the object type "Relation Node" (a small grey circle) is
available in all model types:
o It can be used to create multiple relations of the same type between the same two objects (e.g.

several "Message flows" between two "Pools" in a BPMN model) by linking the first object to the
"Relation Node" and then the "Relation Node" to the second object (this has to be done for each
relation of the same type, between the same two objects, beyond the first direct relation).

o It can be used to draw relations with the same source and target, by going through the "Relation
Node" instead (e.g. when a "Class" is associated with itself). Place the "Relation Node", then draw
the relation from the object to the "Relation Node" and then from the "Relation Node" back to the
object. Kindly add bend points to the created relations to increase the readability.

o It allows the use of relations as the source or target of another relation by using the "Relation
Node" instead. Freely place the "Relation Node" on an existing relation (e.g. association between
two "Classes" in UML) and create the new relation (e.g. "is Associationclass") from/to this "Relation
Node" to/from the desired Object (e.g. the third "Class").

Bee-Up - Handbook v1.6

 27

Available functionality
Bee-Up comes with many different functionalities out of the box besides modelling. Most of them are
shortly described in this section.

Some of the simpler functionalities include:

• Import and export of models in different formats / as images has been described on page 13.

• Queries can be executed on models using the ADOxx Query Language (AQL) through the "Analysis"
component in the menu "Analysis" → "Queries/Reports". Details about the AQL can be found on the
ADOxx homepage (under "Documentation" → "Query Language AQL").

• Cloning of models as described on page 10.

• Performing various checks on models, identifying some possible errors. Some are performed
automatically, others available manually through "Check cardinalities" in the "Model" menu.

• Converting between different types of similar objects through the context menu (right click).

• Directly executing AdoScript code. Available through the "Extras" menu.

• Checking if the latest version of Bee-Up is installed. Available through the "Help" menu.

• Using logging during some of the functionalities. Can be configured for the current session through the
"Extras" menu or more persistently by editing its configuration file.

Process simulation
The Bee-Up tool supports the simulation of several process languages (BPMN, EPC, UML Activity Diagrams,
Flowcharts) through the functionality provided by the ADOxx platform. It provides quantitative data by
pretending to act out a process many times as "simulation runs" and gathering the information while doing
so. The approach through simulation allows to handle processes that contain loops, which can technically
lead to an infinite number of paths. Three types of simulation are available, two of which are described in
more detail later:

• Path analysis – determines the possible paths in a process through several simulation runs and the
quantitative data for each of them, including the paths probability, different types of durations and
costs based on the values specified in the elements.

• Capacity analysis – determines quantitative data from process models in conjunction with one or
several working environment models, finding performers to execute parts of the process. The data also
doesn't focus on the possible paths, but on the connection between the process and the performers.
In addition to durations and costs from the process the result also provides properties from the
working environment model, like capacity workloads or personnel costs.

• Workload analysis – similar to the capacity analysis it works on a set of process models together with
one or several working environment models. However, it focuses on analysing the dynamic behaviour
of the processes by calculating waiting times using a queue model together with a process calendar.

The path analysis is executed only on a single process, gathering durations (e.g. Execution time, Waiting
time) and costs while executing a simulation run. The results from all simulation runs are then collected
based on the found paths and grouped together. As the name suggests its main focus is on analysing
different paths through a process, but the average results over all paths for the entire simulation are also
available. For a path analysis the values from "Execution time", "Waiting time", "Resting time", "Transport
time" and "Costs" (all found in the "Time/Costs" tab of the Notebook) are relevant.

The capacity analysis executes on a set of processes and working environments, considering additional
properties that result from their conjunction. As such it no longer focuses on determining individual paths,
but the results gained from all simulation runs. The results can also be viewed focusing on different aspects
over different timespans, like the results for a single process execution (durations, costs), the results for
individual performers over a year (capacity, personnel costs) or other parts of the working environment. In
addition to the values used in a path analysis it is also important to specify the performer for the active
elements (Tasks, Actions etc.). This is achieved through the "Performer" attribute under "Simulation
settings" in the Notebook, which expects an AQL which is evaluated during simulation. To simplify
specifying the performer it is recommended to first also open the "Working Environment Models" that are

https://www.adoxx.org/live/adoxx-query-language-aql

Bee-Up - Handbook v1.6

 28

to be used and use the alternative editor available (see section Editing attributes). Additionally, some
details have to be specified at the starting element, found in the "Simulation settings" tab of the Notebook.

All types of simulations are available through the "Simulation" component
and have certain requirements on the process models:

• Only one starting point is allowed (Start Event, Initial Node, Start Terminal).

• Each path must end in an end-type object (End Event, Final Node, End Terminal).

• "Either or" decisions must be modelled with the corresponding type of element (Exclusive Gateway,
XOR operator, Decision/Merge, Decision, Switch) and all outgoing "Subsequent" relations must specify
a "Transition condition". The "Transition condition" should either specify a probability of the path as a
number or a condition based on "Variable" elements from the model.

• Opening a parallelism must be modelled with the corresponding type of element (Non-exclusive
Gateway, Fork, Parallel fork) and must be merged again with the corresponding type of element (Non-
exclusive Gateway (converging), Join, Parallel merge). Each opened parallelism must be closed by its
own merge.

Note that every time a model is changed, the simulation cache has to be cleared for the changes to be
considered by the simulation. This can be achieved through the "Edit" menu ("Free simulation cache") or
the corresponding icon on the toolbar.

Model execution
Two types of models can be directly executed in Bee-Up since version 1.3: Petri Nets and Flowcharts. This is
achieved through implementing the language's semantics and further extending where appropriate. Details
on how to execute Petri Nets have been described on page 24, allowing to fire transitions and move tokens
throughout the model manually or automatically. Additionally, the "Transitions" of Petri Nets provide an
"Effect" attribute which can specify AdoScript code that is triggered every time the "Transition" fires. This
attribute has to be enabled first through the model attribute "Allow effects".

It is possible to create and execute Flowchart models with elements that have AdoScript code deposited in
them. We will not focus here on how to create proper Flowcharts, instead presenting the relevant elements
and attributes necessary for their execution in the Bee-Up tool.

To create an executable Flowchart it is necessary to have a "Start Terminal", which provides the button to
start the execution. It is also possible to have several "Start Terminals" in a single model to cover different
cases (e.g. varying ways of collecting input) or to have entirely separate Flowcharts in the same model. For
example one "arithmetic operators" model could have several Flowcharts, one for each operator or an
"array sorting" model providing Flowcharts for different approaches of sorting arrays. The code to be
executed at each "Operation" should be provided in its "Operation code" attribute, using AdoScript and/or

the additional keywords made available (only available in Flowcharts, see of the "Operation code"
attribute for more details). The "Decision" uses the "Check expression" attribute to evaluate an expression
and continue down the corresponding path. The expression should evaluate to either true (not 0) or false
(0) and the outgoing "Subsequent" relations should specify under "Expression result" for which of the two
outcomes they are used. The execution continues along the Flowchart until it can no longer find a valid
"Subsequent" relation to follow. The "Switch"12 selects one of several possible follow-up elements by
evaluating an expression from the "Evaluate expression" attribute and checking its result with the results
from evaluating the "Compare expression" attribute of the outgoing "Subsequent" relations and selecting
the first one where both results are equal. The "Subsequent" relations also provide a "Flowchart condition",
which is evaluated and if it is not fulfilled then the "Subsequent" relation will be skipped. The "End
Terminal" can use its "Ending type" to specify whether it represents a success or a failure.

The separation of code into different function blocks is also possible by putting them in different models, or
at least using different "Start Terminals" that can then be called through the "External Operation" element.
This element has the "External type" attribute controlling what type of operation should be accessed. More
details about the operation have to be provided in the respective tabs through the notebook. One of the

12 Available by changing the mode to "Extended Flowchart" through the "View → Mode" menu.

Bee-Up - Handbook v1.6

 29

possible options here is to execute a Flowchart by referencing a specific "Start Terminal". In this case it is
important to consider the specified "Required variables" of the "Start Terminal" and also provide the
"Passed Variables" and "Returned Variables" in the "External Operation". An "External Operation" can also

execute the different Attribute Profiles described in the next section. Check the additional information in
the corresponding notebooks for the here mentioned elements and attributes for more details.

Code generation
Bee-Up also supports some limited code generation for certain types of models:

• SQL Create statements from ER Models.

• Source code skeletons for Java, C++ and Python from UML Class Diagrams.

The SQL Create statement generation is available through the model attributes of an ER model under "ER
properties". It processes the model and writes the necessary SQL code to create the tables in a relational
database. Details about the peculiarities of the functionality can also be found in the model attributes
under "ER properties", describing how certain specific cases are handled or what the model should contain
to create better results.

Source code skeletons (i.e. bare-bones code that has to be fleshed out) can be generated from UML Class
Diagrams through the "UML Class Diagram 2 Skeleton" menu item found in the "Model" menu of the
"Import/Export" component. It expects a UML Class Diagram to be opened in Bee-Up and allows to select
one of the available languages (Java, C++ or Python) and creates the source code in a chosen folder or
directly provides it as text in a box (if no folder is chosen). What is currently supported:

• Classes and interfaces (classes with stereotype "interface" or Interface objects) with their visibility
(public, private ...) and IsAbstract.

• Properties with most of their information: visibility, name, type, multiplicity (used as is) and default
value (assigned as is).

• Operations with most of their information: visibility, name, parameter list (used as is) and return type
(used as is).

• Association, Composition and Aggregation are used to add additional properties unless there's
indicators that it shouldn't (no role name, direction, not navigable ends etc.).

• Generalization (between two classes or between two interfaces) and realization (between class and
interface).

The functionality tries to interpret the model as best as possible, assumes that the model is correct for the
selected language and creates the corresponding parts of code. Some examples for the assumptions it
makes:

• It assumes that the identifiers (e.g. class-names) only have characters allowed for the selected
language.

• It assumes that there are no two variables with the same name or operations with the same signature.

• If for example the Model contains a structure like "Class A --Generalization--> Interface B" then the
code for Java will say "class A extends B". The correct version of that should be "Class A --Realization-->
Interface B" to create "class A implements B".

• Some parts are taken "as they are", like the parameters of operations or property types, so those have
to fit the desired programming language.

There are also certain things that will not be considered or performed:

• Details from "Referenced class" and "Referenced interface" are ignored, only their name is used.

• Packages are ignored.

• Relations that have a Relation Node as the source/target are not handled and might lead to an error.

• Any "internal" dependencies between properties are not considered and are not ordered
automatically as needed, e.g. default value of one property depends on value of another property
being set beforehand.

• Sophisticated checks, e.g. when inheriting methods from interfaces: has an operation with the same
signature already been inherited from somewhere else?

Bee-Up - Handbook v1.6

 30

Extending Bee-Up functionality
Bee-Up now provides different ways to add custom functionality not directly provided by the tool. It is
possible to create and exchange add-ons for Bee-Up through this system (further just called the add-on
system and add-ons). It allows to execute user-defined scripts, web-service calls or system applications.
However, this add-on system does not allow to extend or change the available types of models, objects,
relations and attributes13 in Bee-Up. What can be done through add-ons are things like user interaction,
processing of models, analysing of models and adaptation of models and their data. While it provides a lot
of freedom in processing of the available models and data they can unfortunately also be damaged, for
example due to bugs in one of the used add-ons. Use any add-ons at your own risk.

Following we will describe how additional functionality can be made available and used in the Bee-Up tool.
It is useful, if not even necessary, to have knowledge about AdoScript, the scripting language provided by
the ADOxx platform. More about AdoScript can be found in the ADOxx documentation available at
https://www.adoxx.org/live/external-coupling-adoxx-functionalty. Additional descriptions of the available
interfaces can be found at https://www.adoxx.org/AdoScriptDoc/index.html. Also a lot of the
implementation of a specific add-on is handled through attributes available through the notebook of the
elements. Please remember that each tab in a notebook can have multiple pages and check the additional

information about attributes and elements in Bee-Up that is available through the button in their
corresponding notebook.

Extension through Flowcharts
Since the extension of Bee-Up with executable Flowchart models in version 1.3 it is possible to exchange
Flowcharts with other users through the already available export and import means described on page 13.
The details on how to create executable Flowcharts have already been described on page 28.

Extension through Attribute Profiles
With Bee-Up 1.4 an additional approach for extending the functionality of Bee-Up is provided through
different types of Attribute Profiles. They are like objects that are stored outside of the models and can be
referenced by attributes of objects, for example in the "External Operation" element. The following types
of Attribute Profiles are available to extend the functionality in Bee-Up:

• Call Olive MSC Service – This represents a specific service available through the interface of an Olive
Microservice Controller.

• HTTP-called Functionality - This represents a specific functionality provided by a service which can be
accessed using HTTP.

• System-called Functionality - This represents a specific functionality provided by the system the tool is
running on which can be accessed using a system call (e.g. through command-line).

• Complex Functionality - This represents a complex functionality which is further described through a
Flowchart.

• AdoScript Functionality - This represents a specific functionality coded directly as AdoScript. In a sense
this is the most powerful one, since it can recreate all the other three types of Attribute Profiles.

All of them allow to customize how the necessary parameters are determined and how the result should be
processed in great detail providing as much freedom as possible for the best user interaction, but also
require some solid knowledge of AdoScript to do so. Note that most of the Attribute Profile types do not
entirely restrict the granularity of what is accessed / called. However, their instances have to flesh out the
details once they are executed so that only a specific function is accessed. For example an Attribute Profile
can represent a very specific functionality, like moving a robot arm, or a bunch of functionality from which
later on one specific is chosen (e.g. through user interaction), like an Attribute Profile representing the
entire robot arm and the user chooses a specific functionality like moving, picking up or resetting.

These Attribute Profiles can be created, viewed and edited through the "Edit → Attribute profiles…" menu

item (see picture on the left) the while in the "Modelling" component (left most icon in the Toolbar).

13 However, (almost) every element has an attribute called "General purpose attribute", which has no specific
meaning for Bee-Up itself and can be used by such add-ons.

https://www.adoxx.org/live/external-coupling-adoxx-functionalty
https://www.adoxx.org/AdoScriptDoc/index.html

Bee-Up - Handbook v1.6

 31

They can be executed through the "Extras → Execute External Functionality" menu item (see picture on the
right).

Each Attribute Profile is executed in their own scope and they generally work the same way:

• First the relevant parameters are set and made available as variables. Details about those variables can

typically be found in the information text of the "Pre-processing" attribute.

• Second the code provided in the Pre-processing attribute is executed as is. This can be used for several
things, like gathering the necessary input for executing the functionality (e.g. through user interaction,
loading from the model etc.) or adapting the available variables and their values. Any further steps are
skipped if Pre-processing ends with an error, identified by the ecode variable being not 0.

• Third the main functionality is executed with the previously set parameters. For the AdoScript
functionality the map containing links to files (map_asf_filelinks) loads additional values from the "File
links" table (unless the ID is already present) after the second step but before executing the code.

• Fourth and last the code provided in the Post-processing attribute is executed as is. This can be used
for several things (provide the result to the user, adapt some models based on the provided result etc.)
and has access to additional variables. Details about those variables can typically be found in the

information text of the "Post-processing" attribute.

The Attribute Profiles can of course be exchanged with other users through the already available export
and import functionality described on page 13. They can be exported together with models in one file,
however the selection of Attribute Profiles is performed in a separate tab of the export dialog:

When importing there is also a separate tab to state where the Attribute Profiles from the file should be
put in the tool:

AutoStart Attribute Profiles
With version 1.6 of Bee-Up an AutoStart feature for Attribute Profiles has been added. Simply put it
executes all the executable Attribute Profiles that are found in the "AutoStart" directory on starting the
tool. A benefit this provides is the possibility to extend certain GUI elements of the Bee-Up tool through
add-ons, for example using INSERT_MENU_ITEM or INSERT_ICON commands of the "Application" message
port. Several of Bee-Ups functionalities are now actually added through the AutoStart feature. To
deactivate some of those functionalities simply move the corresponding Attribute Profiles to the "AutoStart
(deactivated)" directory.

It is also possible to create functionalities that are executed exactly once. The "First time Welcome
message" and "Initialize Model Groups" are designed like this. In their case they can be run again by moving
them from the "AutoStart (deactivated)" directory to the "AutoStart" directory. Their approach to

Bee-Up - Handbook v1.6

 32

executing only once calls a procedure in the Post-processing part of the code which moves them to the
"AutoStart (deactivated)" directory (see sub-section AutoStart of section Available AdoScript functions for
more details).

While it is possible to have dependencies between AutoStart functionalities it is generally discouraged in
order to avoid having the user deal with load-order. Should it however be necessary for any reason, e.g.
when extending an existing functionality: The Attribute Profiles are executed in a similar order as they are
seen in the modelling tool14.

Since Attribute Profiles used by AutoStart can be added and edited by the users, it is possible that the
"AutoStart" can crash the tool (e.g. infinite loop, accessing something that it shouldn't etc.). However, a
mechanism is in place to recover from such a case. If the tool crashes due to automatically executing an
Attribute Profile then the "AutoStart" is disabled the next time the tool is started, providing several options
to fix the issue: skip the AutoStart, view a log of successfully executed Attribute Profiles or disable
AutoStart all together.

The following picture shows the two necessary groups (directories) for the "AutoStart" to work and the
default "Attribute profiles" directory.

AdoScript Remote Execution
Bee-Up comes with an interface which allows its use with a deployed AdoScript Remote Execution (ASRE)
server. The details about ASRE can be obtained from its project page. Simplified it allows to use a running
Bee-Up instance as a remote AdoScript execution environment, accessing its models, processing AdoScript
code etc. Conceptually it works by managing the jobs through the ASRE server and Bee-Up regularly checks
the server if any new jobs are posted for it, and if so, it executes them and posts the result to the server.
The ASRE functionality can be turned on in Bee-Up and temporarily configured by using the corresponding
executable Attribute Profiles (through the "Extras" → "Execute External Functionality" menu). A more
persistent setup of the ASRE configuration can be achieved through the corresponding configuration file
(see section Editing configuration files). The relevant parameters are:

• serverUrl – specifies the URL where the ASRE API can be accessed under. Typically ends with the text
"/AdoScriptRemoteExecution/api/".

• instanceToken – specifies the unique token the Bee-Up instance uses on the server. This token should
also be used when posting jobs to the ASRE server.

• delay – specifies the minimum delay in milliseconds between checking the server for new jobs.

Handling large amounts of code
Depending on the complexity of the task to be solved by an add-on the amount of necessary code can vary.
However, the attributes in the notebook where the code is provided only allow for a limited amount of
characters to be stored, typically 32000 characters. There are however different approaches available to
deal with long AdoScript code, which we will describe in the following.

In some cases it is possible and probably also more feasible to split the code into different objects, like
separate operations in a Flowchart and thus evade the character limit. AdoScript also allows to define your
own functions / procedures which can be called wherever necessary and thus help to reuse code (see the
previously mentioned AdoScript documentation for more on procedures). Since the "External Operation"
allows to execute other Flowcharts it is also an option to split the code into different Flowcharts for reuse.

14 It is character based. Simplified: "1" before "11" before "2" before "A" before "a" before "B" before "b". Avoid
relying on other characters to influence the order, since the internal sorting can deviate from what is seen in the
modelling tool.

Bee-Up - Handbook v1.6

 33

If splitting the code is not an option then the code could also be stored in a file and then loaded and
executed in AdoScript. This can be achieved by using the EXECUTE command (to run the code from the file).
The necessary files could be stored in the installation folder of Bee-Up, preferably in their own sub-folder.
When a relative file path is specified for the EXECUTE command then it is considered relative to the current
working directory folder. Note that relative file paths can cause a problem when used on installations for
Linux or macOS, since the current working directory there is different than on Windows. To create add-ons
that also work on Linux and macOS determine the tools path using the CC "Application" GET_PATH
command instead of a relative path.

An extension is available for Visual Studio Code to help with writing AdoScript. More information about
that can be found at: https://marketplace.visualstudio.com/items?itemName=ADOxxorg.adoxx-adoscript.
Alternatively an AdoScript syntax highlighting for Notepad++ is available under the following link:
https://www.adoxx.org/live/adoxx-development-languages-syntax-support

Editing configuration files
Many of the configurations, especially the ones used by new functionalities, are now stored in the internal
database. To allow editing the configuration a special menu item "Edit internal configuration file" is
available through the "Extras" menu. It allows to select one of the configuration files and edit it in the Bee-
Up tool. The format of the configuration files is not strictly defined, so each functionality or add-on can use
a format that suits best. The typical format used by functionalities provided by Bee-Up itself is a simple
property file syntax:

• Configurations use simple key-value pairs.

• A line can contain one key-value pair.

• The key and the value are separated by an equals sign (=).

• Keys are text (strings), while values can also be different types.

• The characters # or ! can be used at the start of a line to indicate a comment until the end of the
line.

Note that configurations are often loaded on starting the Bee-Up tool, so for changes to a configuration file
to take effect a restart of Bee-Up can be necessary.

Checking global variables, functions and procedures
Bee-Up comes with a lot of internal variables, functions and procedures that are defined on the global
scope. Creating extensions can run into the problem of overwriting the existing global variables, functions
or procedures, rendering certain functions unavailable or broken. To mitigate this several procedures are
provided to check if certain identifiers are already in use and catch any problems before they arise. They
also allow to register own identifiers so other extensions can check if they are not competing with one
another. Details about the procedures can be found in the section Extension management.

Handling cases where procedures are already available or not is up to the extension developer. The way
AdoScript is implemented it is not possible to directly define a function or procedure on a conditional basis,
e.g. in an IF. However, it is possible to place the definition of functions and procedures in a file and only
load that file (using EXECUTE) if certain conditions are met, i.e. loading it in an IF. Also to ensure that other
extension don't overwrite your used global identifiers it is recommended to register them using the
corresponding procedures.

In general it is recommended to use some prefix for the identifiers variables, functions and procedures
developed in the extension to reduce the chance of using the same identifiers as the others.

Available AdoScript functions
The recent updates to Bee-Up allow to further extend the functionalities of the tool using AdoScript. To
facilitate the development of own add-ons for Bee-Up some helpful functions and procedures are made
available by the tool and are shortly described in this section. Note that these do not list all of the available
functions and procedures, nor does it contain any functions or commands directly provided by AdoScript.
These functionalities have also been developed over several years, so expect differences, especially

https://marketplace.visualstudio.com/items?itemName=ADOxxorg.adoxx-adoscript
https://www.adoxx.org/live/adoxx-development-languages-syntax-support

Bee-Up - Handbook v1.6

 34

between different categories, e.g. some procedures show errors through GUI elements, some set the ecode
to not zero, some recover to default values.

AdoScript Remote Execution
While the implementation in Bee-Up is set up to use a configuration to work with the AdoScript Remote
Execution (ASRE), some of the following functions and procedures might be useful in other cases. For more
details about ASRE check its documentation

• asre_checkTimer(lastExec:integer, delay:integer) – Returns true if enough time passed from
the last execution based on the delay or false otherwise. The inputs should be in milli seconds, and
lastExec should be in the relation to the same reference time as used by getTickCount().

• ASRE_INIT_CONFIG configFile:string asreConfig:reference – Initializes a default ASRE
configuration map, updating its values based on the provided file-path (if available) and returns it
through the asreConfig parameter. See section Editing configuration files for details on the supported
format.

• ASRE_POLL_SERVER_ONCE scriptServer:string instanceToken:string – Checks the specified ASRE server
once if there is anything to execute for the provided instance token and if so then executes it and
returns the result. The server should be a valid URL to where the ASRE API is deployed, most often
ending in " AdoScriptRemoteExecution/api/".

AutoStart
While the implementation in Bee-Up is set up to use a working configuration for AutoStart, some of its
functions and procedures can also be useful for other functionalities. The default global variable containing
the configuration is called g_autostart_config. If more control over the execution of Attribute Profiles is
necessary, then check the section Executable attribute profiles.

• AUTO_INIT_CONFIG configFile:string autostartConfig:reference – Initializes a default
AutoStart configuration map, updating its values based on the provided file-path (if available) and
returns it through the autostartConfig parameter. See section Editing configuration files for details on
the supported format.

• AUTO_DEACTIVATE_AUTOSTART_PROFILE attrprofId:integer – Moves the specified attribute
profile into the "deactivated" directory for the default AutoStart configuration.

• AUTO_GET_DIRECTORY dirName:string autostartDirId:reference – Places the ID of the top-level
directory with the specified name or 0 if it doesn't exist.

• AUTO_ENSURE_DIRECTORY dirName:string autostartDirId:reference – Places the ID of the top-
level directory with the specified name. If the directory doesn't exist then it will be crated.

• AUTO_GET_AUTOSTART_PROFILES autostartConfig:map attrprofIds:reference – Finds all the
attribute profiles according to the provided AutoStart configuration and places their IDs as a string list
in attrprofIds.

• AUTO_DEACTIVATE_PROFILE autostartConfig:map attrprofId:integer – Moves the specified
attribute profile into the "deactivated" directory for the provided AutoStart configuration.

• AUTO_EXECUTE_MULTIPLE_PROFILES autostartConfig:map attrprofIds:string – Runs the
specified executable Attribute Profiles according to the provided configuration. Safety measures are
circumvented when using this procedure.

• AUTO_EXECUTE_AUTOSTART_PROFILES autostartConfig:map – Runs multiple executable Attribute
Profiles according to the provided configuration. Performs the typical AutoStart safety measures.

• AUTO_RE_ENABLE_AUTOSTART autostartConfig:map – Re-enables the AutoStart feature if it has been
disabled due to some safety measures.

Cloning
Functions and procedures for cloning individual or multiple elements (models, objects etc.)

• CLN_CLONE_MODEL_SET (string:str_modelids) id_targetmodgrp:integer str_suffix:string

map_modelclones:reference – Creates clones for the models specified as the main parameter in the
target model group with the provided suffix attached at the end. Interrefs between elements of the
clones are adapted to target the clones if possible. A map is placed in map_modelclones which
contains the IDs of the original models as keys and their values are the ID of the clone.

Bee-Up - Handbook v1.6

 35

• CLN_CLONE_MODEL (integer:id_model) id_targetmodgrp:integer str_suffix:string

id_modelclone:reference – Creates a clone of a single model specified as the main parameter in the
target model group with the provided suffices attached at the end. Interrefs between elements of the
clones are adapted to target the clones if possible. The ID of the clone is placed in id_modelclone.

• CLN_CLONE_ATTRPROF integer:id_attrprof id_attrprofdir:integer str_suffix:string

id_attrprofclone:reference – Creates a clone of a single attribute profile specified as the main
parameter in the target directory with the provided suffix attached at the end. The ID of the clone is
placed in id_attrprofclone.

• CLN_CLONE_INSTANCE (integer:id_object) id_targetmodel:integer

id_objectclone:reference – Creates a clone of a single modelling instance specified as the main
parameter in the target model. The ID of the clone is placed in id_objectclone.

• CLN_CLONE_RELATION (integer:id_relation) id_targetmodel:integer

id_relationclone:reference – Creates a clone of a single relation specified as the main parameter
in the target model. The source and target objects must exist in the target model with the same name.
The ID of the clone is placed in id_relationclone.

• CLN_COPY_ATTR_VAL (integer:id_attr) id_source:integer id_target:integer – Copies the
attribute value provided as the main parameter from the source (model, object, etc.) to the garget
(model, object etc.).

• CLN_BEND_IREFS integer:id_object id_attr:integer map_modelclones:map – Changes the
interrefs of the provided object (main parameter) in the specified attribute to target objects/models
from the clones instead if possible. The map_modelclones should contain the IDs of the original
models as keys and their values should be the ID of their clone.

• CLN_MOVE_ATTRPROF integer:id_attrprof id_attprofdir:integer -

• CLN_UI_CLONE_ACTIVE_MODEL – Uses GUI elements to clone the currently active model.

• CLN_UI_CLONE_SELECT_MODEL_SET – Uses GUI elements to clone a set of models selected by the user.

Configuration files
Functions and procedures to simplify the use of configuration files through the use of ADOxx maps.
Configuration files are assumed to be simple property files which contain key-value pairs, each pair in a
separate line and the key and value separated by an equals sign (=). Comments are possible for an entire
line when starting with an exclamation mark (!) or a hash/pound sign (#).

• lam_cf_kvToConfigString(key, value) – Creates the string representing the key-value pair in the
configuration file. Both key and value can be of any type.

• CF_CONFIG_STRING_TO_MAP configString:string configMap:reference – Transforms a
configuration text, e.g. from a configuration file, to an ADOxx map structure where keys are always of
type string and the values use the best fitting type available. The result is placed in configMap.

• CF_MAP_TO_CONFIG_STRING configMap:map configString:reference – Transforms a map to the
corresponding configuration text. The result is placed in configString.

• CF_UPDATE_CONFIG_STRING configString:reference configMap:map strict:integer – Updates
the provided configuration text (provided through configString) with values from the map, replacing
values where possible. If strict is not 0 then any key-value pairs found only in the configuration text will
be commented out. Any comments that were part of the configuration text are kept. Also any key-
value pairs in the map that would become a comment, i.e. when the key starts with an exclamation
mark or a hash/pound sign, are skipped. The updated result is found in configString.

• CF_LOAD_CONFIG_FROM_FILE configFile:string configMap:reference – Loads the configuration
from a file-path into the configMap reference.

• CF_SAVE_CONFIG_TO_FILE configFile:string configMap:map – Saves the configuration from the
provided map in the specified file-path. If the file already exists then the values are updated, otherwise
the file is created when possible.

• CF_EDIT_CONFIGFILE_GUI configFile:string configMap:map – Opens a GUI interface in ADOxx
to edit the configuration from the specified file-path. The configuration map is used to update any
values in the configuration text before it is presented to the user. If the file doesn't exist then this tries
to create it.

Bee-Up - Handbook v1.6

 36

Conversion
Functions and procedures for converting between different datatypes, escaping characters or similar.

• lam_toString(input) – The input can be of any type and returns the input as a string. Useful to
ensure that something is provided as a string.

• lam_toBoolean(input) – The input can be of any type and returns a value that can be interpreted as
a boolean.

• lam_toNumber(input) – The input can be of any type and returns a number if the input represents a
number or returns undefined otherwise.

• toNumber(input:string) – Returns a number if the input represents a number or returns undefined
otherwise.

• toBestFittingType(input:string) – Analyses the input and returns it as the best fitting data type.
For example: if the input looks like a number then the number is returned; if the input looks like an
array then the array is returned etc.

• escapeStringUriStyle(input:string, allowedCharacters:string) – Escapes all characters in
the input that are not found in the list of allowedCharacters. The allowedCharacters should simply be a
string containing all the characters that don't have to be escaped, e.g. for only keeping simple alpha-
numeric characters "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".

• escapeStringForPath(input:string) – replaces all characters in the input that are not allowed as
part of a file-path with a hyphen (-).

• decToHex(input:integer) – Transforms a decimal integer into a hexadecimal value. The returned
value is a string.

• hexToDec(input:string) – Transforms a hexadecimal value to a decimal integer. The returned value
is an integer.

• lam_toJson(input) – Returns a string with the best possible JSON representation of the input.

• mapToJson(input:map) – Returns a string with the JSON representation of the ADOxx map. ADOxx
maps are considered to be the same as JSON objects. All the keys of the map will be transformed into
strings, which can lead to losing some values. Other types are transformed as best as possible.

• arrayToJson(input:array) – Returns a string with the JSON representation of the ADOxx array.
ADOxx maps are considered to be the same as JSON objects. All the keys of the map will be
transformed into strings, which can lead to losing some values. Other types are transformed as best as
possible.

• fromJson(input:string) – Returns an ADOxx value that best represents the provided JSON input.
The mapping between the different datatypes is: JSON object → ADOxx map, JSON array → ADOxx
array, JSON string → ADOxx string, simple JSON number → ADOxx integer or real, JSON true → 1,
JSON false → 0, JSON null → "null". JSON numbers with an exponent notation will be stored as strings.

• escapeStringForSQL(input:string) – Function used by the "Create SQL Statements" functionality
to escape invalid characters in names.

Date / time
These functions and procedures allow handling strings in ISO 8601 date and time formats. The supported
format for a date and time is YYYY-MM-DDThh:mm:ss.sss and can also contain the optional time zone
designator. Functions that use only the date or the time expect the corresponding parts. The separators (T,
:, -) are more important than the exact amount of characters. Most functions also work if only parts of the
date and/or time are provided, assuming default values for anything that is missing from the right side, e.g.
2021-08T14Z is considered to be 14:00:00 on the 1st of August in 2021. There are also functions available
that work directly on map representations of dates/times. These follow the same naming structure, except
instead of "…iso[Time/Date/DateTime]String…" they just use "[Time/Date/DateTime]".

• timeToMap(time:string) – Returns a map representation of the given time, including "hours",
"minutes" and "seconds" as numbers and "timezone" as a string.

• mapToIsoTime(timeMap:map) – Returns an ISO 8601 string representation of the given map
representing a time. It expects the map to have values for "hours", "minutes" and "seconds" as
numbers and "timezone" as a string, otherwise it will use 0 / empty values.

Bee-Up - Handbook v1.6

 37

• isoDateToMap(date:string) – Returns a map representation of the given date, including "years",
"monthOfYear" and "dayOfMonth" as numbers.

• mapToIsoDate(dateMap:map) – Returns an ISO 8601 string representation of the given map
representing a date. It expecets the map to have values for "years", "monthOfYear" and
"dayOfMonth", otherwise it will use either 0 (for year) or 1 (for day and month).

• isoDateTimeToMap(datetime:string) – Returns a map representation of the given date and time,
including "years", "monthOfYear", "dayOfMonth", "hours", "minutes" and "seconds" as numbers and
"timezone" as a string.

• mapToIsoDateTime(datetimeMap:map) – Returns an ISO 8601 string representation of the given map
representing a date and time. It expects the map to have values for "years", "monthOfYear",
"dayOfMonth", "hours", "minutes" and "seconds" as numbers and "timezone" as a string, otherwise it
will use the value 1 for "monthOfYear" and "dayOfYear", an empty value for "timezone" or 0 for any
other missing part.

• applyOffsetToIsoTimeString(time:string, offset:string) – Returns the result of applying a
time duration (hh:mm:ss.sss) to a time. The offset should start with either a + or - to indicate whether
to add or subtract. The result can be negative or have hours larger than 23 to preserve moving to a
different date.

• normalizeIsoTimeStringToUtc(time:string) – Returns the corresponding time in the UTC time
zone for the provided input considering time zones.

• compareIsoTimeStrings(time1:string, time2:string) – Returns a positive number if time1 is
larger, a negative number if time2 is larger or zero if both times are the same. Accounts for different
time zones.

• isoDateToDays(date:string) – Returns the amount of days the date is compared to the reference
date of 1970-01-01. Returns a positive number for dates after the reference date, zero for the
reference date or a negative number for dates before the reference date. Accounts for leap years.

• daysToIsoDate(days:integer) – Returns a string with the date based on the amount of specified
days in relation to the reference date of 1970-01-01. The input can be a positive (after) or negative
(before) number. Using this function with a parameter of 0 will return "1970-01-01".

• isLeapYear(date:string) – Returns true if the year of the provided date is a leap year, or otherwise
false.

• applyOffsetToIsoDateString(date:string, offset:string) – Returns the result of applying a
duration in the format of YYYY-DDD to the date. The offset should start with either a + or – to indicate
whether to add or subtract. A year in the offset is always considered 365 days.

• compareIsoDateStrings(date1:string, date2:string) – Returns a positive number if date1 is
later, a negative number if date2 is later or zero if both dates are the same.

• normalizeIsoDateTimeStringToUtc(datetime:string) – Returns the corresponding date and time
in the UTC time zone for the provided input considering time zones.

• compareIsoDateTimeStrings(datetime1:string, datetime2:string) – Returns a positive
number if datetime1 is later, a negative number if datetime2 is later or zero if both are the same.
Accounts for time zones.

• applyAdoxxTimeToIsoDateTimeString(datetime:string, duration:time) – Returns the result of
applying a duration that is of the ADOxx type "time" (YY:DDD:hh:mm:ss) to the provided date and
time. The function also works with a date or time alone by leaving the parts to the left or right side of
"T" empty.

Executable attribute profiles
Functions and procedures to run the different types of executable Attribute Profiles available in Bee-Up. In
general there are two procedures for each type of executable Attribute Profile provided: 1) a simple one
which uses the data provided in the Attribute Profile and 2) an override version which allows to change the
behaviour and parameters used during the execution. The 2nd versions are used for example when
triggered from a Flowchart.

• EXECAP_EXECUTE_ATTRPROF_GUI – Opens the "Execute Attribute Profile" GUI and runs the selected
Attribute Profile.

Bee-Up - Handbook v1.6

 38

• EXECAP_EXECUTE_ATTRPROF (integer:id_functionobj) – Runs the specified Attribute Profile if
possible.

• EXECAP_HTTP_CALL (integer:id_functionobj) val_httpcode:reference

map_respheaders:reference str_respbody:reference – Executes an "HTTP call" type Attribute
Profile whose ID is provided as the main parameter. The HTTP response code, headers and body are
provided through the reference parameters.

• EXECAP_HTTP_CALL_OVERRIDE (integer:id_functionobj) val_skipprecode:integer
val_skippostcode:integer str_endpoint:string str_method:string str_auth:string
str_username:string str_password:string map_headers:map str_body:string

val_httpcode:reference map_respheaders:reference str_respbody:reference – A version of
EXECAP_HTTP_CALL that allows controlling many different parameters, which can also be influenced
by the pre-processing code:
o when val_skipprecode is not 0 then the "Pre-processing" code is skipped.
o when val_skippostcode is not 0 then the "Post-processing" code is skipped.
o the values for str_endpoint, str_method, str_username and str_password can be directly specified

or use "" to get the values from the Attribute Profile.
o str_auth can be specified as "Basic" to use basic authentication, or no authentication in any other

case.
o map_headers and str_body specifying the headers and body of the request.
o NOTE: This procedure and its parameters CAN change in the future!

• EXECAP_OLIVE_SERVICE_CALL (integer:id_functionobj) any_serviceresponse:reference –
Executes an "Olive operation call" type Attribute Profile whose ID is provided as the main parameter.
The result is provided through the reference parameter.

• EXECAP_OLIVE_SERVICE_CALL_OVERRIDE (integer:id_functionobj) val_skipprecode:integer
val_skippostcode:integer str_endpoint:string str_microserviceid:string
str_microservicename:string str_operationid:string val_usesimpleinput:integer

map_input:map any_serviceresponse:reference – A version of EXECAP_OLIVE_SERVICE_CALL.
That allows controlling many different parameters, which can be also influenced by the pre-processing
code:
o when val_skipprecode is not 0 then the "Pre-processing" code is skipped.
o when val_skippostcode is not 0 then the "Post-processing" code is skipped.
o the values for str_endpoint, str_microserviceid, str_microservicename and str_operationid can be

directly specified or use "" to get the values from the Attribute Profile.
o Val_usesimpleinput can be specified as 1 (true), 0 (false) or -1 to use the setting from the Attribute

Profile.
o map_input specifies the specifying the headers and body of the request.
o NOTE: This procedure and its parameters CAN change in the future!

• EXECAP_SYSTEM_CALL (integer:id_functionobj) – Executes a "System call" type Attribute Profile
whose ID is provided as the main parameter.

• EXECAP_SYSTEM_CALL_OVERRIDE (integer:id_functionobj) val_skipprecode:integer
val_skippostcode:integer str_command:string str_commandtype:string
val_showcmd:integer map_sys_inputvars:map str_sys_inputvarskeys:string

map_sys_outputvars:reference str_sys_output:reference str_sys_errors:reference – A
version of EXECAP_SYSTEM_CALL that allows controlling many different parameters, which can also be
influenced during the pre-processing code:
o when val_skipprecode is not 0 then the "Pre-processing" code is skipped.
o when val_skippostcode is not 0 then the "Post-processing" code is skipped.
o the values for str_command and str_commandtype (Synchronous CMD, Asynchronous CMD or

Application) can be directly specified or use "" to get the values from the Attribute Profile.
o when val_showcmd is set to 0 then the console window will not be shown and values smaller than

0 will use the configuration from the Attribute Profile.
o through map_sys_inputvars the variables and their values available for the arguments can be

provided. The variable names should be the keys and str_sys_inputvarskeys should be a string list
(separated by "~") containing all the keys of map_sys_inputvars.

Bee-Up - Handbook v1.6

 39

o through map_sys_outputvars some of the variables after post-processing can be retrieved. The
value for each key is evaluated as an expression and stored as the new value in the map.

o in str_sys_output and str_sys_errors the content written to the standard output and error streams
is captured if possible.

o NOTE: This procedure and its parameters CAN change in the future!

• EXECAP_COMPLEX_CALL (integer:id_functionobj) – Executes a "Complex" type Attribute Profile
whose ID is provided as the main parameter.

• EXECAP_COMPLEX_CALL_OVERRIDE (integer:id_functionobj) val_skipprecode:integer
val_skippostcode:integer val_comp_execdepth:integer id_comp_start:integer
val_comp_delay:real val_comp_output:integer val_comp_debug:integer
map_comp_inputvars:map str_comp_inputvarskeys:string map_comp_outputvars:reference

str_comp_stdout:reference str_comp_debout:reference – A version of EXECAP_COMPLEX_CALL
that allows controlling many different parameters, which can also be influenced during the pre-
processing code:
o when val_skipprecode is not 0 then the "Pre-processing" code is skipped.
o when val_skippostcode is not 0 then the "Post-processing" code is skipped.
o the val_comp_execdepth should be set to 1. It specifies how deep the execution currently is in

case of recursive calls.
o through id_comp_start the ID of the Start Terminal or smaller than 0 to get the value from the

Attribute Profile.
o through val_comp_delay, val_comp_output and val_comp_debug the delay, output behaviour and

debug behaviour can be overridden from what is specified in the Flowchart.
o through map_comp_inputvars the input variables and their values available for the execution

from the Start Terminal can be provided. The variable names should be the keys and
str_comp_inputvarskeys should be a string list (separated by "~") containing all the keys of
map_comp_inputvars.

o through map_comp_outputvars some of the variables after post-processing can be retrieved. The
value for each key is evaluated as an expression and stored as the new value in the map.

o in str_comp_stdout and str_comp_debout the content written to the standard output and debug
output is captured if possible.

o NOTE: This procedure and its parameters CAN change in the future!

• EXECAP_ADOSCRIPT_CALL (integer:id_functionobj) – Executes an "AdoScript" type Attribute
Profile whose ID is provided as the main parameter.

• EXECAP_ADOSCRIPT_CALL_OVERRIDE (integer:id_functionobj) val_skipprecode:integer
val_skippostcode:integer map_asf_filelinks:map map_asf_inputvars:map

str_asf_inputvarskeys:string map_asf_outputvars:reference – A version of
EXECAP_ADOSCRIPT_CALL that allows controlling many different parameters, which can also be
influenced during the pre-processing code:
o when val_skipprecode is not 0 then the "Pre-processing" code is skipped.
o when val_skippostcode is not 0 then the "Post-processing" code is skipped.
o the map_asf_filelinks allows to override the values for file links. Its structure should be similar to

the File links table from the Attribute Profile: the keys should specify the ID column and their value
the File column.

o through map_asf_inputvars the input variables and their values available for the execution can be
provided. The variable names should be the keys and str_asf_inputvarskeys should be a string list
(separated by "~") containing all the keys of map_asf_inputvars.

o through map_asf_outputvars some of the variables after post-processing can be retrieved. The
value for each key is evaluated as an expression and stored as the new value in the map.

o NOTE: This procedure and its parameters CAN change in the future!

Executable flowcharts
Functions and procedures to execute the Flowcharts in Bee-Up.

• FC_EXEC_FC_FROM_START (integer:id_start) int_userinput:integer

map_fc_outputvars:reference str_fc_stdout:reference str_fc_debout:reference –
Executes a Flowchart starting from the Start Terminal ID provided through the main parameter. When

Bee-Up - Handbook v1.6

 40

int_userinput evaluates to true, then the execution will prompt the user for every necessary input
variable. The map_fc_outputvars can specify a map with values containing simple expressions to be
evaluated and placed back in the map. Also any of the specified "Returned variables" of the Start
Terminal are placed in the map as well. The std_fc_stdout and str_fc_debout references can specify a
string variable to which any outputs written to the standard output (through PRINT/LN) or debug
output are appended.

• FC_EXEC_FC (integer:fc_id_startelement) val_fc_delay:real val_fc_output:integer
val_fc_debug:integer val_fc_execdepth:integer val_fc_printtimes:integer
val_fc_highlight:integer map_fc_inputvars:map str_fc_inputvarskeys:string

map_fc_outputvars:reference str_fc_stdout:reference str_fc_debout:reference –
Executes a Flowchart starting from the object ID provided through the main parameter. While this can
technically start at any object in the Flowchart, it means that some necessary variables are not set, due
to skipping code that would otherwise be executed. The map_fc_outputvars, str_fc_stdout and
str_fc_debout are handled the same as in FC_EXEC_FC_FROM_START. The other variables control the
following parameters:
o through val_fc_delay the delay between switching from one element to the next during the

execution can be specified.
o the standard output and debug output behaviour is controlled through val_fc_output and

val_fc_debug: -1 will close the output window and not use it, 0 will not change the output window
in any way, 1 will use the output window if it already exists, 2 will reuse the available output
window or create a new one if necessary and 3 will reset the output window and create it if
necessary.

o the val_fc_execdepth specifies the depth of the execution, which mainly influences the values
printed in the debug output.

o if val_fc_printtimes is true then Start Terminals and End Terminals will print a timestamps to the
standard output.

o if val_fc_highlight is true then the currently processed element is highlighted in the Flowchart
during execution.

o through map_fc_inputvars the variables and their values available for the execution can be
provided. The variable names should be the keys and str_fc_inputvarskeys should be a string list
(separated by "~") containing all the keys of map_fc_inputvars.

Extension management
Functions and procedures that help managing extensions, most notably support checking if any extensions
are competing for identifiers (global variables, functions, procedures) with one another. Note that only
identifiers that are registered are checked by these procedures. Most of the procedures also set an ecode
when checking or registering if the identifier is already known.

• EM_CHECK_GLOBAL_VARIABLE (string:variableName) exists:reference – Checks if the name is already
used for a global variable and places the result in the exists reference.

• EM_CHECK_GLOBAL_VARIABLES (string:variableNames) existingVariables:reference – Checks if the
names provided as the string list are already used by a global variable and places any names that are
already in use in the provided reference.

• EM_REGISTER_GLOBAL_VARIABLE (string:variableName) – Registers a global variable name if possible,
making it known to the extension management. If registration fails, e.g. because the name is already in
use, then ecode will be set to true.

• EM_REGISTER_GLOBAL_VARIABLES (string:variableNames) failedRegistrations:reference – Registers
several global variable names if possible, making them known to the extension management. If
registration for any of them fails, e.g. because the name is already in use, then it will be added to the
failed registrations and ecode will be set to true.

• EM_LIST_GLOBAL_VARIABLES globalVariables:reference – Places a list of all known global variable
names in the provided reference parameter as a string list.

• EM_CHECK_GLOBAL_FUNCTION (string:functionName) exists:reference – Checks if the name is already
used for a global function and places the result in the exists reference.

Bee-Up - Handbook v1.6

 41

• EM_CHECK_GLOBAL_FUNCTIONS (string:functionNames) existingFunctions:reference – Checks if the
names provided as the string list are already used by a global procedure and places any names that are
already in use in the provided reference.

• EM_REGISTER_GLOBAL_FUNCTION (string:functionName) – Registers a global function name if
possible, making it known to the extension management. If registration fails, e.g. because the name is
already in use, then ecode will be set to true.

• EM_REGISTER_GLOBAL_FUNCTIONS (string:functionNames) failedRegistrations:reference – Registers
several global function names if possible, making them known to the extension management. If
registration for any of them fails, e.g. because the name is already in use, then it will be added to the
failed registrations and ecode will be set to true.

• EM_LIST_GLOBAL_FUNCTIONS globalFunctions:reference – Places a list of all known global function
names in the provided reference parameter as a string list.

• EM_CHECK_GLOBAL_PROCEDURE (string:procedureName) exists:reference – Checks if the name is
already used for a global procedure and places the result in the exists reference.

• EM_CHECK_GLOBAL_PROCEDURES (string:procedureNames) existingProcedures:reference – Checks if
the names provided as the string list are already used by a global procedure and places any names that
are already in use in the provided reference.

• EM_REGISTER_GLOBAL_PROCEDURE (string:procedureName) – Registers a global procedure name if
possible, making it known to the extension management. If registration fails, e.g. because the name is
already in use, then ecode will be set to true.

• EM_REGISTER_GLOBAL_PROCEDURES (string:procedureNames) failedRegistrations:reference –
Registers several global procedure names if possible, making them known to the extension
management. If registration for any of them fails, e.g. because the name is already in use, then it will
be added to the failed registrations and ecode will be set to true.

• EM_LIST_GLOBAL_PROCEDURES globalProcedures:reference – Places a list of all known global
procedure names in the provided reference parameter as a string list.

HTTP/S Requests
Procedures to perform HTTP and HTTPS request. For more details and other procedures for specific cases
(e.g. sending / receiving binary data) check the Extended HTTP Requests module in the Components /
Modules used in Bee-Up section.

• HTTP_SEND_REQUEST (string:str_url) str_method:string map_reqheaders:map
str_reqbody:string val_respcode:reference map_respheaders:reference

str_respbody:reference – Sends an HTTP/S request to the specified URL (str_url) using the
provided HTTP method (str_method), headers (map_reqheaders) and message body (str_reqbody).
Some request headers are automatically added by the underlaying code (e.g. "Accept", "Content-
Length"). The response is then provided through several parameters: the HTTP response code
(val_respcode), the response headers (map_respheaders) and the response body (str_respbody).

• HTTP_SEND_AUTH_REQUEST (string:str_url) str_method:string str_username:string
str_password:string map_reqheaders:map str_reqbody:string val_respcode:reference

map_respheaders:reference str_respbody:reference – Works similar to HTTP_SEND_REQUEST,
except that it uses basic authentication with the provided str_username and str_password.

• HTTP_URL_ENCODE (string:str_content) str_allowedset:string str_encoded:reference –

Escapes characters in the provided content using URL encoding (%xx, e.g. %20) and provides the result
in str_encoded. The str_allowdset controls which characters should be escaped, allowing four settings:
"JS" (default, similar to JavaScripts encodeURIComponent function), "Inter" (based on various sources,
including URI specification, "Lax" and "VeryLax" (both escape everything that is a non-ASCII character
and various ASCII control charcters).

• HTTP_URL_ENCODE_QUERY (map:map_content) str_allowedset:string str_encoded:reference

– takes the simple structure from map_content and provides a URL encoded query string through
str_encoded, e.g. for the query portion of a URL or for use with "application/x-www-form-urlencoded”
data. The str_allowedset parameter works the same way it does for HTTP_URL_ENCODE.

Bee-Up - Handbook v1.6

 42

Logging
Functions and procedures that help with logging certain events in different ways. Many of the procedures
use a loggerConfig, where the global logger stored in the variable g_log_globalLogger can be used as the
parameter. There are five types of events (with their level number in parentheses): fatal errors (1), errors
(2), warnings (3), information (4) and debug (5).

• LOGGER_INIT_CONFIG configFile:string loggerConfig:reference – Initializes a default logger
map, updating its values based on the provided file-path (if available) and returns it through the
loggerConfig parameter. See section Editing configuration files for details on the supported format.

• LOG_DEBUG (string:message) – Logs a debug event with the specified message to the global logger.

• LOG_INFO (string:message) – Logs an info event with the specified message to the global logger.

• LOG_WARN (string:message) – Logs a warning event with the specified message to the global logger.

• LOG_ERROR (string:message) – Logs an error event with the specified message to the global logger.

• LOG_FATAL (string:message) – Logs a fatal error event with the specified message to the global
logger.

• LOGGER_SET_LOG_WINDOW (string:window) loggerConfig:reference – Specifies the name of the
window where events should be logged to. Set the window name to "" to not log to any window.

• LOGGER_SHOW_LOG_WINDOW loggerConfig:reference – Shows the log window of the logger. If it has
no name specified for the log window it will assign the default name of "Event Log".

• LOGGER_SET_LOG_FILE (string:file) loggerConfig:reference – Specifies the path to a file
where events should be appended to. Set the path to "" to not log to any file.

• LOGGER_SET_LOG_FILE_GUI loggerConfig:reference – Shows a GUI to set the log file.

• LOGGER_SET_LOG_LEVEL (integer:logLevel) loggerConfig:reference – Specifies up to which
level events should be logged or set to 0 to not log anything.

• LOGGER_SET_LOG_LEVEL_GUI loggerConfig:reference – Shows a GUI to set the log level.

• LOGGER_SET_LOG_POPUP_LEVEL (integer:popupLevel) loggerConfig:reference – Specifies up to
which level events should also trigger a popup message in the tool or set to 0 to not show such
popups. Log level takes precedence of this.

• LOGGER_SET_LOG_POPUP_LEVEL_GUI loggerConfig:reference – Shows a GUI to set the log popup
level.

• LOGGER_SET_ALL_LOG_LEVELS_GUI loggerConfig:reference – Shows a GUI to set the log level and
the log popup level.

Olive
Functions and procedures to use Olive microservices, the Olive Microservice controller (Olive MSC) etc.
Should an error during any of them occur then ecode is set to true (not 0).

• mapToOliveJson(input) – The provided simple map is transformed into the JSON data structure used
by the Olive MSC for the inputs of service calls.

• OLIVE_MSC_GET_MICROSERVICE_ID mscRestUrl:string microserviceName:string

microserviceId:reference – Retrieves the ID of the first microservice known under the name at the
specified Olive MSC or empty if none is found.

• OLIVE_MSC_CALL_MICROSERVICE_ID_OPERATION mscRestUrl:string microserviceId:string

operationId:string input:string response:reference – Calls an operation available through
the Olive MSC. The input should be a valid JSON string as it is expected by the Olive MSC.

• OLIVE_MSC_CALL_MICROSERVICE_OPERATION mscRestUrl:string microserviceName:string

operationId:string input:string response:reference – Calls an operation available through
the Olive MSC. The input should be a valid JSON string as it is expected by the Olive MSC.

Other
An assortment of other functions and procedures available that don't quite fit into any other category.

• RENAME_BASED_ON_ATTRS (string:str_objids) arr_attrnames:array – Renames all the objects
provided in the main parameter string list of IDs based on the values they have specified in one of its
attributes. The attributes to use are specified through an array of attribute names, and the first

Bee-Up - Handbook v1.6

 43

attribute that is found to have a non-empty value is used for the name. Additionally to ensure unique
names the ID of the object is appended in parentheses.

• BEND_CONNECTOR_CENTER (integer:id_connector) val_xoff:real val_yoff:real – Determines
the centre of a connector specified as the main parameter and adds two bend points around it if it has
fewer than two bend points. The val_xoff and val_yoff specify the offset between the two bend points.

• UNBEND_CONNECTOR_CENTER (integer:id_connector) – Does kind of the opposite of
BEND_CONNECTOR_CENTER. It ensures that the connector specified as the main parameter has at
most one bend point, removing any others.

• GENERATE_MODELGROUPS string:str_mgroupnames id_supermgroup:integer – Creates additional
model groups based on the main parameter string list (separator "@") in the parent model group
specified through id_supermgroup. If the parent model group ID is smaller or equal to 0 then it will use
the "Models" model group.

• GEN_ADL_FILE_RECURSIVE integer:id_mgroup str_folder:string – Exports all the models found
under any level of depth of the model group specified as the main parameter in an ADL file. The ADL
file is in a folder of the system specified through str_folder and has the name of the selected model
group.

• GEN_GFX_FILES_RECURSIVE integer:id_mgroup str_folder:string str_gfxformat:string –
Exports all the models found under any level of depth of the model group specified as the main
parameter as graphical files. The graphical files are placed in a folder of the system specified through
str_folder, have the provided type if it is supported (e.g. bmp, gif, jpeg, png, tiff) and will be named
after the model's name, version and type. The drawing area of the models will be trimmed as best as
possible before generating the graphic.

• ADD_MODELGROUP_MODELS_RECURSIVE integer:id_mgroup ref_modelids:reference

str_sep:string – Determines all the models that are found under any level of depth of the model
group specified as the main parameter and places their IDs in the string list ref_modelids using the
separator provided through str_sep.

• TRIM_DRAWING_AREA (integer:id_model) – Trims the drawing area of the model specified as the
main parameter and saves it. Trimming only occurs from the bottom right and is based on the position
and size of the elements.

• TRIM_DRAWING_AREA_TWO (integer:id_model) – Trims the drawing area of the model specified as
the main parameter and saves it. Trimming only occurs from the bottom right and works by making
the drawing area smaller in 1cm steps until it's no longer possible.

• SUBSUP_EXPORT_GUI – Shows the GUI for the "Export Exercises" functionality, exporting all models
found under any level of depth of a selected model group as ADL and graphical files in a selected
folder.

• GET_CUSTOM_ATTRIBUTE_VALUES id_object:integer str_attrname:string

ref_result:reference – Provides in ref_result an array with all the values found in the "Custom
attributes" table that have as "Property" set the specified str_attrname. The values of the table are
always of type string, even when numbers are entered.

• GET_CUSTOM_ATTRIBUTE_VALUE id_object:integer str_attrname:string

ref_result:reference – Provides in ref_result the first value found in the "Custom attributes" table
that has the "Property" set to the specified str_attrname. The value is always provided as a string due
to the type of the table.

• SET_CUSTOM_ATTRIBUTE_VALUE id_object:integer str_attrname:string str_value:string -
Sets the value for the first row where "Property" has the specified str_attrname in the "Custom
attributes" table. If no such row exists, then a new one is added. The value is always provided as a
string due to the type of the table.

Petri Net specific
Functions and procedures that provide specific functionalities for Petri Net models, mostly dealing with
simulation and analysis. Note that some of the procedures here rely on values evaluated from expression
attributes, which aren't automatically updated when executing long AdoScripts. Use the AdoScript "Core"
UPDATE_EXPR_ATTRS to update expression attributes.

Bee-Up - Handbook v1.6

 44

• safeLolaName(name:string, identifier:integer) – Function that creates a name that can be
used for the LoLA place/transition net format. Escapes characters and appends the identifier.

• PN_PLACE_TRANSITION_NET_LM (integer:id_pnmodel) str_result:reference – Generates the
LoLA Place/Transition net format for the model with the ID specified as the main parameter and places
it in the result parameter. The model is loaded and unloaded as needed.

• PN_FIRE_TRANSITION (integer:id_trans) str_cthandling:string int_fired:reference –
Fires a specific Transition if possible. Through str_cthandling the behaviour of cold transitions can be
controlled where the possible values are: "always fire", "based on probability" and "never fire".
Whether the transition has really fired or not will be placed in the int_fired parameter.

• PN_FIRE_ELIGIBLE_TRANSITIONS (integer:id_pnmodel) str_strategy:string

str_cthandling:string str_fired:reference – Fires all Transitions that are ready in the model
specified through the main parameter. The str_strategy specifies what strategy should be employed if
transitions require the same tokens to fire and the possible values are: "default", "random", "priority"
and "priority then random". Through str_cthandling the behaviour of cold transitions can be controlled
where the possible values are: "always fire", "based on probability" and "never fire". A string list of all
Transitions that really have fired is placed in str_fired.

• PN_FIRE_SEVERAL_ITERATIONS (integer:id_pnmodel) str_strategy:string

str_cthandling:string val_iterations:integer str_log:reference – Simulates several
iterations of firing all transitions that are ready in the model specified through the main parameter.
The str_strategy and str_cthandling parameters are the same as for PN_FIRE_ELIGABLE_TRANSITIONS.
The amount of iterations to fire is specified through the val_iterations parameter. If str_log has the
value "yes" then a log will be created during the execution and stored in the str_log parameter.

• PN_SIMULATE_ITERATIONS_WITH_DELAY (integer:id_pnmodel) str_strategy:string

str_cthandling:string val_delay:real str_log:reference – Simulates the firing of all eligible
Transitions in the model specified through the main parameter. Instead of executing a specific number
of iterations it fires until it is cancelled. As such it relies on GUI elements and the user cancelling.
Through val_delay a delay in seconds can be specified between the iterations. If val_delay is 0 or
smaller then the user is asked after each iteration whether to continue. The other parameters are the
same as for PN_FIRE_SEVERAL_ITERATIONS.

• PN_FIRE_ONE_ELIGIBLE_TRANSITION (integer:id_pnmodel) str_strategy:string

str_cthandling:string str_fired:reference – Fires one Transition in the model specified
through the main parameter that is ready. The str_strategy controls how to decide which Transition to
fire and its possible values are: "default", "random", "relative", "priority then default", "priority then
random" and "priority then relative". Through str_cthandling the behaviour of cold transitions can be
controlled where the possible values are: "always fire", "based on probability" and "never fire". The ID
of the Transition that has fires is placed in the str_fired parameter, which can be empty if no Transition
has fired.

• PN_FIRE_SEVERAL_TRANSITIONS (integer:id_pnmodel) str_strategy:string

str_cthandling:string val_iterations:integer str_log:reference – Similar to
PN_FIRE_ONE_ELIGABLE_TRANSITION, except that it performs multiple iterations whose amount is
specified through val_iterations. Each iteration selects one Transition that can fire and does so. If
str_log has the value "yes" then a log will be created during the execution and stored in the str_log
parameter.

• PN_SIMULATE_TRANSITIONS_WITH_DELAY (integer:id_pnmodel) str_strategy:string

str_cthandling:string val_delay:real str_log:reference – Simulates the firing of one eligible
Transition in the model specified through the main parameter. Instead of executing a specific number
of iterations it fires until it is cancelled. As such it relies on GUI elements and the user cancelling.
Through val_delay a delay in seconds can be specified between the iterations. If val_delay is 0 or
smaller then the user is asked after each iteration whether to continue. The other parameters are the
same as for PN_FIRE_SEVERAL_TRANSITIONS.

• PN_UPDATE_STATELOG (integer:id_pnmodel) str_firedtrans:string

str_statelog:reference – Updates a state log in CSV format for the model specified through the
main parameter. The state of the model is appended to str_statelog if it is not empty, otherwise a

Bee-Up - Handbook v1.6

 45

statelog is initialized in that parmeter. Through str_firedtrans the transitions that have fired since the
last update of the statelog can be specified to capture them in the log too.

• PN_STORE_STATE (integer:id_statestore) – Stores the state of the Petri Net model in the State
Storage object specified as the main parameter. It uses the Petri Net the State Storage is located in.

• PN_RESTORE_STATE (integer:id_statestore) – Restores the state from a State Storage specified as
the main parameter to its Petri Net model. It uses the Petri Net the State Storage is located in.

• PN_UPDATE_INTERREFS (integer:id_statestore) – Updates the interrefs of a State Storage
specified as the main parameter to reference elements in its model.

Random distributions
Several functions and procedures are provided to create random numbers based on specific distributions.

• randomStandardUniformDist() – Returns a random floating-point number for a uniform distribution
between (incl.) 0.0 and (excl.) 1.0.

• randomUniformDist(low:ral, high:real) – Returns a random floating-point number for a uniform
distribution between (incl.) low and (excl.) high.

• randomStandardNormalDist() – Returns a random floating-point number for a standard normal
distribution (µ = 0, standard deviation = 1).

• randomNormalDist(mu:real, stddev:real) – Returns a random floating-point number for a
normal distribution with the specified µ and standard deviation.

• randomTriangularDist(low:real, mode:real, high:real) – Returns a random floating-point
number for a triangular distribution with the specified low, mode and high.

• randomExponentialDist(rate:real) – Returns a random floating-point number for an exponential
distribution with the specified rate / inverse scale.

• randomDiscreteDistPositions(probabilities:array) – Returns a random integer number based
on the probabilities specified in the array. The returned value corresponds to the position in the array,
starting at 0. The sum of all probabilities must be 1.

• randomDiscreteDistValues(probabilities:map) – Returns a random value based on the
probabilities specified in the map. The values should be specified as the keys of the map under which
their probabilities are found e.g. {"a":0.4, "b":0.2, "c":0.2, "d":0.1, "e":0.1}. The sum of all probabilities
must be 1.

• randomDiscreteUniformDist(low:integer, high:integer) – Returns a random integer number
for a discrete uniform distribution between (incl.) low and (excl.) high.

• randomBernoulliDist(probability:real) – Returns either 1 or 0 based on the Bernoulli
distribution. The provided probabilities is for the 1-value.

• randomRademacherDist() – Returns either 1 or -1 based on the Rademacher distribution, where both
values have a 50% probability.

• randomCoinToss() – Returns either 1 or 0 based on a fair coin toss, where both values have a 50%
probability.

Type support
Support functions and procedures to help with common functions for different types of data, like maps or
strings.

• mapKeysArray(input:map) – Returns all the keys from the map as an array with their proper type.

• mapKeysTypes(input:map) – Returns all the types of keys that are used in a map and returns them as
a string list (separated with " "). The length of the list can be shorter than the map.

• mapKeysList(input:map) – Returns all the keys from the map as a string list (separated with "~". All
the keys must be of type string or else this will cause an error.

• mapKeysTypedList(input:map) – Returns all the keys from the map as a string list (separated with
"~"). The values in the string list reflect their type, e.g. strings are put in double quotes, so they can be
transformed to their proper value using the eval() function.

• countSubstringOccurrence(input:string, substr:string) – Returns how often the specified
sub-string is found in the input.

Bee-Up - Handbook v1.6

 46

• countTokenOccurrence(list:string, token:string, separator:string) – Returns how often
the specified token is found in a string list using the provided separator.

• replaceTextInArea(text:string, newtext:string, start:integer, end:integer) – Returns a
new string where the area between (incl.) start and (excl.) end in text will be replaced with newtext.
The new text can be longer or shorter than the area it replaces.

• TS_RECORD_SORT_SIMPLE objectId:integer recordAttrName:string

recordColumnName:string direction:string - Sorts the rows of a record/table according to the
values in one of its columns. Direction should specify "desc" to order in descending order, otherwise
the values are sorted in ascending order.

• TS_RECORD_FIND_ROWS_FROM_VALUE objectId:integer recordAttrName:string

recordColumnName:string columnValue:string rowIds:reference - Finds all rows of a
record/table which contain a specific value in a specified column.

• TS_RECORD_FIND_FIRST_ROW_FROM_VALUE objectId:integer recordAttrName:string

recordColumnName:string columnValue:string rowId:reference - Finds the first row of a
record/table which contains a speicifc value in a specified column.

• TS_RECORD_AS_ARRAY objectId:integer recordAttrName:string result:reference -
Transforms the content from a record/table into an array representation. Rows are represented as
maps.

• TS_RECORD_ROW_AS_MAP rowId:integer result:reference - Transforms a row from a
record/table into a map representation.

Version checks
Functions and procedures that help checking if a new version is available online and for comparing version
numbers. The procedures use a configuration map that contains the details of the tool or component and
where to check for a new version. Therefore, it can also be used for checking versions of other things
besides Bee-Up. The version checks are performed as the last activity when the tool is started, i.e. executed
after the AutoStart functionality of Bee-Up. It also automatically performs checks for each configuration
that is found in a global array stored in the variable g_vercheck_otherConfigs, so automatically checking for
new versions of components can be achieved by appending configurations to the array.

• getSemanticVersion(input:string) – Returns a map representation of the semantic version
number, splitting it into "major", "minor" and "patch" numbers and "label". The input can start with
some text (may not contain digits) until the version number which will be ignored.

• compareSemanticVersions(version1:string, version2:string) – Returns a positive number if
version1 is larger, a negative number if version2 is larger or zero if both are the same. Excepts both
versions to be compatible with the getSemanticVersion function. The "label" is only considered when
one of the versions has an empty label (i.e. no detailed label comparison performed).

• compareCompatibleSemanticVersions(version1:string, version2:string) – Returns a positive
number if version1 is larger or version2 is not backwards compatible, a negative number if version2 is
larger and backwards compatible or zero if both are the same. Excepts both versions to be compatible
with the getSemanticVersion function. The "label" is only considered when one of the versions has an
empty label (i.e. no detailed label comparison performed).

• VERCHECK_INIT_CONFIG configFile:string vercheckConfig:reference – Initializes a default
version check configuration map, updating its values based on the provided file-path (if available) and
returns it through the vercheckConfig parameter. See section Editing configuration files for details on
the supported format.

• VERCHECK_GET_LATEST_VERSION_INFO vercheckConfig:map map_latestVersionInfo:reference
– Uses the configuration provided through vercheckConfig to retrieve the label and the date of the
latest version and returns them through map_latestVersionInfo.

• VERCHECK_CHECK_FOR_NEW_VERSION vercheckConfig:reference – Checks if a new version is
available and uses GUI elements to notify the user about the outcome. This check should be initiated
by the user.

• VERCHECK_PERFORM_AUTOMATIC_CHECK vercheckConfig:reference – Checks if a new version is
available and uses GUI elements to notify the user if this is the case. This check should be used when
automatically performing a check, e.g. at start-up.

Bee-Up - Handbook v1.6

 47

• VERCHECK_UPDATE_CONFIG_FILE vercheckConfig:map – Updates the configuration file that stores
the version check configuration.

Components / Modules used in Bee-Up
The following lists some generally available components and modules that Bee-Up uses. Details and
information about them can be looked up at the corresponding sources.

ADOxx add-ons
• AdoScript Configuration Files – v1.0.0

• AdoScript Date and Time – v1.0.0

• AdoScript Extended Conversions – v1.0.1

• AdoScript Logging Procedures – v1.0.0

• AdoScript Random Distributions – v1.0.0

• AdoScript Remote Execution – v1.0.0

• AdoScript Type Support – v1.1.0

• ADOxx Add-on Extension – v1.1.0

• ADOxx Auto Start – v1.0.0

• ADOxx Cloning Procedures – v1.0.0

• ADOxx Olive Integration – v1.0.0

• ADOxx Version Check – v1.0.0

• Extended HTTP Requests – v1.2.2

• RDF Transformation – v3.2.0

https://www.omilab.org/adoxx/modules/details/?id=155
https://www.omilab.org/adoxx/modules/details/?id=156
https://www.omilab.org/adoxx/modules/details/?id=157
https://www.omilab.org/adoxx/modules/details/?id=158
https://www.omilab.org/adoxx/modules/details/?id=159
https://www.omilab.org/adoxx/modules/details/?id=160
https://www.omilab.org/adoxx/modules/details/?id=161
https://www.omilab.org/adoxx/modules/details/?id=162
https://www.omilab.org/adoxx/modules/details/?id=163
https://www.omilab.org/adoxx/modules/details/?id=164
https://www.omilab.org/adoxx/modules/details/?id=192
https://www.omilab.org/adoxx/modules/details/?id=173
https://www.omilab.org/adoxx/modules/details/?id=166
https://www.omilab.org/adoxx/modules/details/?id=175

Bee-Up - Handbook v1.6

 48

Change history

Changes in version 1.6
• The Bee-Up Handbook and the IMKER case study are now available through the “Help” menu when

they are installed with Bee-Up. Note that these are the local files and updated versions might exist
online.

• Updated the used "Extended HTTP Requests" to the new version, now supporting HTTPS.

• Fixed issues with the Petri Net State Storage having bad entries when copy and pasting models /
contents.

• Moved the "Create SQL Create statements" functionality from the "Model" menu ("Import/Export"
component) to a model attribute found under "ER properties" of the ER Model.

• Added a context menu item to rename selected elements based on their "Denomination" or "Label"
attribute or in some cases other referenced objects.

• Added the "UML Class Diagram 2 Skeleton" prototype, which converts a class diagram into Java,
Python or C++ code.

• Added checking for new versions of Bee-Up: manually through "Help" menu and automatically on
start-up.

• Added "Visualized value" attribute to "Note" elements.

• Added a "Switch" element, conditions (guards) to "Subsequent" relations and "Ending type" to "End
Terminal" in Flowcharts.

• The preservation of ecode values throughout Flowchart executions has changed to better fit with the
"Ending type" of an "End Terminal", i.e. the ecode is "saved" after executing an "Operation" or
"External Operation" and "restored" before executing custom code of an "Operation", "External
Operation", "Decision" or "Switch". Furthermore the "saved" ecode is also passed on beyond a
"Neutral" type "End Terminal".

• Added an implementation to work with an ASRE Server (AdoScript Remote Execution).

• Added an "AutoStart" feature, which allows executing specific functionalities when the tool is started.
Some Bee-Up functionalities are already realized with AutoStart.

• Added a table attribute "Custom attributes" to each object. This can be used when certain values/data
should be stored at the objects, but none of the other already available attributes fit. It can be
processed for example in custom implementations of functionalities / scripts. Additionally added two
procedures "GET_CUSTOM_ATTRIBUTE_VALUES", "GET_CUSTOM_ATTRIBUTE_VALUE" and
"SET_CUSTOM_ATTRIBUTE_VALUE" to make working with the values from the table easier. For more
control use "TS_RECORD_FIND_ROWS_FROM_VALUE" or
"TS_RECORD_FIND_FIRST_ROW_FROM_VALUE".

• Configuration files for several functionalities are stored in the internal database. They use a simple
syntax (key=value and lines are commented with #) and can be edited through "Extras -> Edit internal
configuration file".

• Basic logging procedures are now available in AdoScript and several menu items in the "Extras" menu
help configure them.

• Restructured some internal files. This might also have changed some function names (e.g.
lam_tokenCount -> countTokenOccurrence)! Also added new functions (fromJson, mapToJson,
arrayToJson, etc.).

• Removed last remaining dependency on "ASC_Map_functions_150317.asc" and thus removed that
file.

• Removed broken attributes from "Performance indicator overview" table.

• Other minor fixes and improvements.

Changes in version 1.5
• Installation scripts for Linux and macOS created.

• Added functionality for cloning models, available through the "Modelling" component in the "Model"
menu. Cloning a set of models at once will also adapt the Inter-Model references of the cloned models
to point towards other cloned models of the same set if possible.

Bee-Up - Handbook v1.6

 49

• Flowcharts: When executing through the button of the Start Terminal the user will be asked to provide
values for all the required variables. The kind of popup and message shown depends on the selected
type for that variable.

• General: Added a "General purpose attribute" to every element and relation. This can be used when
certain values/data should be stored at the objects, but none of the other already available attributes
fit. This can be used for example in custom implementations of functionalities / scripts.

• Minor improvements to notations, help/information texts, handling of functionalities etc.

Changes in version 1.4
• UML: Improvements to some elements (hide name of Lifeline, Diamond shape for Relation Node to

use with UML Associations etc.).

• Flowcharts: Added proper help-texts to the objects and improved the execution functionality:
- Previously operations could use one "keyword-extension" (PRINTLN, READS, INC etc.) as its code to

make simple operations easier to understand. This has been further improved. It is now possible to
use multiple "keyword-extensions" in the same operation. Each used "keyword-extension" has to be
put in its own separate line and will be considered "as a whole" from the beginning of the line to the
end of the line.

- During the execution the Operation and Decision have access to some preset variables (Do not
overwrite their values directly or you might not get them back!):
▪ "this_modelid" which contains the ID of the Flowchart model.
▪ "this_objid" which contains the ID of the currently executing object.
▪ "str_fc_stdout" which contains everything written using PRINT or PRINTLN.
▪ "str_fc_debout" which contains everything written to the debug output, even if the debug

window is not shown.
- Added the option to disable highlighting of elements during the execution. This can increase the

speed quite drastically if the debug output is also disabled.
- Added an "External Operation" object which allows executing functionality described somewhere

else (e.g. a different Flowchart, a RESTful web-service etc.).

• External web services and other similar functionality can be added as Attribute Profiles and called
using the new "Execute External Functionality" found in the "Extras" menu. This allows the modeler to
extend the available functionality in Bee-Up to some degree and the service descriptions as Attribute
Profiles can be exchanged using the ADL-Import/Export functionality. In a sense this is a "Plug-in"
mechanism for Bee-Up.

• Integrated the patch for extended HTTP requests in AdoScript.

Changes in version 1.3
• In BPMN and EPC: Added possibility to further describe the decisions made in tasks/functions through

elements based on DMN Version 1.1.
- (BPMN) Tasks and (EPC) Functions can reference a (DMN) Decision through their "Make decision"

attribute.
- (BPMN) Data Objects and (BPMN) Data Associations can be used to further details where and how

(DMN) Input Data is set.

• In BPMN and EPC: Made the notation of relations more distinguishable from one another.

• In PN: Improved and extended the execution and simulation capabilities:
- The Delayed Simulation is now more responsive (Cancelling is now quicker), works with tenths of a

second (it can be faster than 1 second now) and also highlights the fired transitions (to better see the
fired transitions: switch to "Grayscale mode").

- The created simulation log has changed. Instead of only containing the places and the amount of
tokens, it now also contains the transitions and whether they have fired or not. For details check the
information text of the "Show log" attribute.

- A new style for firing transitions was added through the "Automated Transition Firing" element. See
its information text for more details.

Bee-Up - Handbook v1.6

 50

- Added an "Effect" attribute to transitions and an "Allow effects" model attribute. "Allow effects"
activates the "Effect" attribute, which can then be used to specify AdoScript code, which is executed
when the transition is fired (after removing tokens, before creating tokens).

- Places can now have a maximum capacity for tokens specified.
- The transition’s "Fire" buttons can be hidden using the model attribute "Visualize fire button".

• In ER: The Create SQL statements functionality now has two options for handling inheritance 1) the old
style where the table is copied and 2) [now default] which handles inheritance similar to Weak
Entities. They can be switched through the model attribute "IS-A Behaviour".

• Added an option to show models using mostly only black, white and gray for all model types except
UML. This can be enabled for each model through a new model attribute "Grayscale mode".

• Added functionality which executes Flowcharts. The provided code in Flowcharts (Operation
code/Check expression) can use AdoScript as well as some additionally provided keywords. See the
information text for "Execute flowchart from Start" in a Start Terminal for more details.

• Added Functions for AdoScript which provide a random value based on different types of distributions.
Those are:

- randomStandardUniformDist() --> a random value from a uniform distribution between (including)
0.0 and (excluding) 1.0, so it is very close to the Standard Uniform Distribution.

- randomUniformDist(lower_limit, upper_limit) --> a random value from a uniform distribution
between (including) the lower limit and (excluding) the upper limit.

- randomStandardNormalDist() --> a random value from a standard normal distribution (i.e.
expectancy value = 0, standard deviation = 1) based on Box-Muller transformation using a natural
logarithm.

- randomNormalDist(expectancy_value, standard_deviation) --> a random value from a normal
distribution with a specific expectancy and standard deviation based on Box-Muller transformation
using a natural logarithm.

- randomTriangularDist(lower_limit, mode, upper_limit) --> a random value from a triangular
distribution based on inverse CDF from "Beyond Beta - Other Continuous Families of Distributions
with Bounded Support and Applications". The triangle is build from lower_limit to upper_limit with
its peak at mode.

- randomExponentialDist(inverse_scale) --> a random value from an exponential distribution based on
inverse CDF using the inverse scale provided (lambda).

- randomDiscreteDistPositions(probabilities) --> a random value from a discrete set of probabilities.
The probabilities have to be an array and the returned value is a position index (0 to (LEN
probabilities)-1) from the array. The sum of all probabilities should be 1.0.

- randomDiscreteDistValues(value_probabilities) --> a random value from a discrete set of values and
their corresponding probabilities. The value_probabilities have to be a map (key-value pairs), where
the keys are the possible values (either strings or numbers) and their values should be their
probability. The sum of all probabilities should be 1.0.

- randomDiscreteUniformDist(lower_limit, upper_limit) --> a random value from a discrete uniform
distribution of integers between (including) the lower limit and (excluding) the upper limit.

- randomBernoulliDist(probability) --> either 1 or 0 based on the Bernoulli distribution, with the
parameter indicating the probability of the value 1. A probability of 0.5 can be considered a coin-toss.

- randomRademacherDist() --> either 1 or -1 based on the Rademacher distribution, where the
probabilities of both cases are 50%.

- randomCoinToss() --> either 1 or 0 based on a fair coin, with 50/50 chance. So same as
randomRademacherDist, only with other outcomes.

• The automatic change of model names by adding the model group name at their beginning has been
removed, since it has led to problems when importing models.

• Additional minor improvements and bug-fixes.

Major changes in version 1.2
• In BPMN and EPC: Added possibility to describe automated tasks (BPMN Service tasks, EPC functions)

through Petri Nets or Flowcharts.

Bee-Up - Handbook v1.6

 51

• In ER: Added two properties "Data type (direct)" and "Auto increment" for ER attributes, providing
more options to the generation of SQL-Create statements.

• Added additional attributes to elements for enhancing the RDF-Export (e.g. specify element URI,
provide additional triples, meaningful references between models/model elements).

Major changes in version 1.1
• In BPMN: Merged "Intermediate Event (boundary)" and "Intermediate Event (sequence)" into

"Intermediate Event". The old classes are still available and can be converted to allow model
compatibility to Version 1.0

• In PN: Allowed two special conditions on Arcs which control the firing of the transition without
consuming tokens.

• In PN: Added two model attributes "Visualize priorities" and "Visualize probabilities" to turn on and off
the visualization of those transition attributes in the model.

• Added RDF Export functionality for all models.

Bee-Up - Handbook v1.6

 52

Development team
The Bee-Up modelling tool has been realized by the following team:

• Patrik Burzynski (patrik.burzynski@omilab.org): chief developer

• Dimitris Karagiannis: project owner

Additional tools used
The following additional tools, implementations, binary codes etc. are used/included in Bee-Up and their
according licenses apply:

• Java Runtime Environment 1.8 – is used by the RDF Export functionality. Java can be found at
https://java.com

• Apache Jena 3.1.0 – is used by the RDF Export functionality. Apache Jena website is available here:
http://jena.apache.org/

• JDOM 2.0.6 – Developed by the JDOM Project (http://www.jdom.org/), it is used in the RDF Export
functionality.

https://java.com/
http://jena.apache.org/
http://www.jdom.org/

